
Formal Development of a Washing Machine Controller
Model Based on Formal Design Patterns

XIN BEN LI1, FENG XIA ZHAO2

1Department of Computer Science and Technology, Zhejiang Wanli University
 No.8 South Qianhu Road, Ningbo, Zhejiang, 315100, P.R. CHINA,

2School of Nursing, Ningbo college of Health Science
 No.51, Xuefu Road, Ningbo, Zhejiang, 315100, P.R.CHINA,

Abstract: - Formal methods approach to software construction can significantly increase the reliability and
correctness of the resulting software. Formal methods users are given sophisticated languages and tools for
constructing software models, but they often lack some systematic methodological measures to help. Formal
design patterns can help formal methods users speed up the development process by re-using and incorporating
some pre-defined proved and refined models, as design patterns do in object-oriented software. Some formal
design patterns are presented and applied to the development of a washing machine controller model in Event-B
that is a formal method for modeling and reasoning about complex discrete system.

Key-Words: - Formal methods, Event-B, Design Patterns, Washing Machine Controller

1 Introduction
Reactive systems are a class of software and/or
hardware systems whose role is to maintain an
ongoing interaction with their environment rather
than produce some final value upon termination.
Such systems are often critical systems, as errors
occurring during their execution may have dramatic
economical or human consequences. Typical
examples of reactive systems are embedded systems,
computer operating systems, communication
protocols, or process control systems such as a
nuclear reactor [1].

Formal methods are the application of
mathematics to model and verify software or
hardware systems [2]. The main advantages of the
formal methods approach to software or systems
construction is that, whenever applicable, it can lead
to an increase of the reliability and correctness of the
resulting software or systems by several orders of
magnitude. Event-B is a formal method for modeling
and reasoning about systems based on set theory and
predicate logic. It uses refinement to represent
systems at different abstraction levels and uses
mathematical proof to verify consistency between
refinement levels. The Event-B method has been
devised for modeling reactive and distributed
systems [3]. However, formal methods have been
criticized for their lack of accessibility especially for
novice users.

Design patterns in object-oriented software are a
way of communicating expertise by capturing the

solutions to similar design problems and re-using
those solutions [4]. Introducing design patterns
within formal methods can help users of formal
methods speed up the development process by
re-using some pre-defined proved and refined
mini-models. We in this paper present some Event-B
design patterns that can be used for specifying those
reactive systems. The design patterns are constructed
deliberately and proved correctly. They can be
re-used to specify the behaviour as part of a
specification of any reactive system. A case is given
to show the application of the design patterns in
formal Event-B method. This was done within the
framework of the Rodin Platform that is an open tool
set and provides effective support for refinement and
mathematical proof [3].

2 Event-B Method
Event-B is a formal method for system-level
modelling and analysis. It is designed for
long-running reactive hardware/software systems
that respond to stimuli from user and/or environment.
The set-theoretic language in first-order logic takes
as semantic model a transition system with guarded
transitions between states. The correctness of a
model is defined by an invariant property, i.e. a
predicate, or constraint, which every state in the
system must satisfy. More practically, every event in
the system must be shown to preserve this invariant;
this verification requirement is expressed in a number

WSEAS TRANSACTIONS on SYSTEMS Xin Ben Li, Feng Xia Zhao

ISSN: 1109-2777 1463 Issue 12, Volume 7, December 2008

mailto:xb8371@zwu.edu.cn
mailto:zfx_2552@163.com

of proof obligations (POs). This verification is
performed either by model checking or theorem
proving (or both).
 An Event-B model consists of contexts and
machines. Contexts contain the static parts of a model.
These are sets, constants and axioms that describe the
properties of these sets and constants. Machines
contain the dynamic parts of a model. A machine is
made of a state, which is defined by means of
variables. Variables, like constants, correspond to
simple mathematical objects: sets, binary relations,
functions, numbers, etc. They are constrained by
invariants I(v) where v are the variables of the
machine. Invariants are supposed to hold whenever
variable values change, but this must be proved first.
 Besides its state, a machine also contains a
number of events that show the way it may evolve.
Each event is composed of a guard and an action. The
guard is the necessary condition under which the
event may occur. The action determines the way in
which the state variables are going to evolve when
the event occurs. An event may be executed only
when its guard holds. Events are atomic and when the
guards of several events hold simultaneously, then at
most one of them may be executed at any one
moment. The choice of event to be executed is
non-deterministic [2].

In order to progress towards implementation, the
process of refinement is used in Event B. A
refinement is a (usually) more elaborate model than
its predecessor. The refinement of a context is simply
the addition of new sets, constants and axioms to it.
The refinement of a machine consists of refining its
state variables and its events. All state variables v are
replaced by new ones w, some simply by renaming -
i.e. of the same type and meaning - and others by
variables of different type. Existing events are
transformed to work on the new variables. New
events can be defined; that is, the behaviour of an
abstract event E can be refined by some sequence of
E and new events. The new behaviour will usually
reduce nondeterminism.
 More details about Event B can be seen in [3].

3 Event-B Patterns
The purpose of a design pattern is to capture
structures and decisions within a design that are
common to similar modeling and analysis tasks.
They can be re-applied when undertaking similar
tasks to in order reduce the duplication of effort [4].

Reactive systems are characterized by the fact that
their behavior is defined in terms of reactions to input
events (or actions). Sequences of inputs are

recognized, and outputs can be emitted in response.
So, the most basic elements in reactive systems are
action and reaction, action-reaction relations as well
as the interactions between action-reaction pairs. The
action can be viewed as an abstraction of an input
command from environment, such as a start impulse
signal, a login request, or an output instruction to the
controlled agent. We recognized the following five
design patterns when modeling this kind of systems
according to the relationship between the action and
corresponding reaction. The design pattern described
in this paper is an Event-B model.

3.1 Pattern for Action and Weak Reaction
Name: Action&WeakReaction
Problem: When an action is emitted, a reaction
should start in response to the action. If the action
stops to stimulate sequentially, the reaction should
also follow it to stop. However, the reaction
sometimes has not enough time to react, because the
action moves too quickly (the continuance of an
action is too short, or the interval between actions is
too short). This is so-called action and weak reaction.
Solution: The initial model for action and reaction is
made of a state and some events. The state includes
two variable, actionW and reactionW that denote the
action and reaction respectively, and two invariant
INV0_1 and INV0_2 that are used to constrain the
variable’s type to be set {0,1}. The essence of action
and weak reaction is that the number of reactions is
less than the actions’. To formalize the model for
action and weak reaction, two new variable caW and
crW are introduced within the initial model to count
the exact times that action and reaction is set to 1. Of
course, two new invariant INV0_3 and INV0_4 are
needed to constrain the type of caW and crW to be
natural number only. The real weak reaction relation
in a action-reaction block is described by the third
new invariant INV0_5: crW ≤ caW.

Fig.1 Proving perspective for action&WeakReaction

WSEAS TRANSACTIONS on SYSTEMS Xin Ben Li, Feng Xia Zhao

ISSN: 1109-2777 1464 Issue 12, Volume 7, December 2008

In addition to the initialization event, four events
a_on_w, a_off_w, r_on_w and r_off_w are used to
describe the behaviors of action and reaction. The
event a_on_w simply sets variable actionW to 1 and
increases the counter variable caW by 1 when its
guard satisfies actionW=0. The event a_off_w only
sets variable actionW to 0 when its guard satisfies
actionW=1.The event r_on_w and r_off_w are
similar.

The model, at this moment, with four variable, five
invariants and four events seems to be built
completely. However, the proving perspective of
Event B shows that the event r_on_w fails to preserve
the invariant INV0_5, as shown in Fig.1, which
means something in our model is wrong or
incomplete. To guarantee the model is built correctly,
while proving invariant preservation by event
r_on_w, another new invariant INV0_6:
reactionW=0∧actionW=1 => crW ＜ caW has to be
added. Thus, the model for weak reaction is specified
correctly because all 18 Proving Obligation has been
proved and discharged automatically.

 Fig.2 Pattern for action&WeakReaction

After removing the counter variable caW, crW and
pertinent invariants as well as action of events from
the model, which were introduced for modeling only,
we have the pattern for action and weak reaction as
shown in Fig.2.

3.2 Pattern for Action and Strong Reaction
Name: Action&StrongReaction
Problem: In addition to the action and weak reaction
described above, in some situations, we hope that the
reaction could always follow the action’s movement
on and off, that is to say, the reaction and action can
always keep synchronization. This is so-called action
and strong reaction.
Solution: The model for action and strong reaction
can be built by refine the model for action and weak
reaction. The synchronization relation between
action and strong reaction requires that the next
action should not start before the reaction that tracked
the previous action finished. This requirement can be
formalized by a new invariant INV1_1: caW ≤
crW+1, based on the model for weak reaction. MACHINE Action&WeakReaction

VARIABLES actionW, reactionW
INVARIANTS

INV0_1 : actionW ∈ {0,1}
INV0_2 : reactionW ∈ {0,1}

EVENTS
INITIALISATION ≙ WHICH IS ordinary
BEGIN

act1 : actionW = 0
act2 : reactionW = 0

END
a_on_w ≙ WHICH IS ordinary _
WHEN

grd1 : actionW = 0
THEN

act1 : actionW ≔ 1
END

a_off_w ≙ WHICH IS ordinary
WHEN

grd1 : actionW = 1
THEN

act1 : actionW = 0
END

r_on_w ≙ WHICH IS ordinary
WHEN

grd1 : actionW = 1
grd2 : reactionW = 0

THEN
act1 : reactionW = 1

END
r_off_w ≙ WHICH IS ordinary
WHEN

grd1 : actionW = 0
grd2 : reactionW = 1

THEN
act1 : reactionW = 0

END
END

To make this invariant is preserved by all events,
the invariant INV0_5, INV0_6 and INV1_1 are
modified into INV2_1: reactionW=0∧actionW=1
=> caW = crW+1 and INV2_2: actionW=0 ∨
reactionW=1 => caW = crW, at the same time, the
guards of event a_on_w and a_off_w are
strengthened by predicate reactionW=0 and
reactionW=1 respectively. At this stage, we have 20
Proving Obligations that have been proved
automatically for this model as Fig.4 below.

Fig.3 Proving Obligation for action&StrongReaction

WSEAS TRANSACTIONS on SYSTEMS Xin Ben Li, Feng Xia Zhao

ISSN: 1109-2777 1465 Issue 12, Volume 7, December 2008

Thus, we have the pattern for action and strong
reaction as showed in Fig.4 where the counter
variable caW, crW and pertinent invariants as well as
action of events are removed from the model, and
some names for variable and event are changed to
symbolize the strong reaction.

Fig.4 Pattern for action&StrongReactions

3.3 Pattern for Composite Weak and Strong

reactions
Name: CompositeWeak&StrongReactions
Problem: Action and Reaction (weak or strong) are
only the basic blocks for modeling discrete event
system. In most cases, system to be modeled has
some complex situations to handle, because functions
of a large complex system depend on some sequences
of events, in which some events may be of
action-reaction relation (even a action-reaction
chains) and some may occur simultaneously. The
interaction between two action-reaction blocks can

be modeled as composite or synchronization, which
depend on that the two blocks are of weak-strong
reactions or strong-strong reactions. When the weak
reaction of a specific action-reaction block results
eventually in the specific strong reaction of some
action-reaction, it can be recognized as the composite
for weak and strong reactions.

Fig.5 Pattern for composite weak & strong reaction

Solution: The model for composite weak and strong
reaction can be built by refinement of the strong
reaction model. The variables, invariants and events
of the refined model are the union set of strong
reaction model and weak reaction model respectively,
but the event a_on_s of strong reaction model need to
be refined by event r_on_w of weak reaction model.
What the composite really means is that the weak

MACHINE Composite_Weak&Strong_Reaction
VARIABLES

actionW,reactionW,
actionS,reactionS,...

INVARIANTS
INV1_1 : actionW ∈ {0,1}
INV1_2 : reactionW ∈ {0,1}
INV1_3 : actionS ∈ {0,1}
INV1_4 : reactionS ∈ {0,1}
......

EVENTS
INITIALISATION ≙ WHICH IS ordinary
BEGIN
act1 : actionW = 0
act2 : reactioW = 0
act3 : actionS = 0
act4 : reactioS = 0
...

END
a_off_s ≙ ...
r_on_s ≙ ...
r_off_s ≙ ...
a_on_w ≙ ...
a_off_w ≙ ...
r_on_w ≙ WHICH IS ordinary
REFINES a_on_s
WHEN

ggrrdd1144 :: aaccttiioonnWW == 11
ggrrdd1133 :: rreeaaccttiioonnWW == 00
ggrrdd1111 :: aaccttiioonnSS == 00
ggrrdd1122 :: rreeaaccttiioonnSS == 00

THEN
aacctt1111 :: rreeaaccttiioonnWW == 11
aacctt1122 :: aaccttiioonnSS == 11

END
rr__oonn__ww__ffaallssee ≙ WWHHIICCHH IISS oorrddiinnaarryy
WWHHEENN

ggrrdd1111 :: aaccttiioonnWW == 11
ggrrdd1122 :: rreeaaccttiioonnWW == 00
ggrrdd1133 :: ┓┓((aaccttiioonnSS==00∧∧rreeaaccttiioonnSS==00))

TTHHEENN
aacctt1111 :: rreeaaccttiioonnWW == 11

EENNDD
r_off_s ≙ ...

END

MACHINE Action&StrongReaction
VARIABLES actionS,reactionS,
INVARIANTS

INV1_1 : actionS ∈ {0,1}
INV1_2 : reactionS ∈ {0,1}

EVENTS
INITIALISATION ≙ WHICH IS ordinary
BEGIN

act1 : actionS = 0
act2 : reactionS = 0

END
a_on_s ≙ WHICH IS ordinary
WHEN

grd1 : actionS = 0
ggrrdd22 :: rreeaaccttiioonnSS == 00

THEN
act1 : actionS = 1

END
a_off_s ≙ WHICH IS ordinary
WHEN

grd1 : actionS = 1
ggrrdd22 :: rreeaaccttiioonnSS == 11

THEN
act1 : actionS = 0

END
r_on_s ≙ WHICH IS ordinary
WHEN

grd1 : actionS = 1
grd2 : reactionS = 0

THEN
act1 : reactionS = 1

END
r_off_s ≙ WHICH IS ordinary
WHEN

grd1 : actionS = 0
grd2 : reactionS = 1

THEN
act1 : reactionS = 0

END
END

WSEAS TRANSACTIONS on SYSTEMS Xin Ben Li, Feng Xia Zhao

ISSN: 1109-2777 1466 Issue 12, Volume 7, December 2008

reaction will eventually results in the strong reaction
that is stimulated by the strong action, so the
refinement of event a_on_s can be obtained by
superpose the event r_on_w of weak reaction model
onto it. That is to say, the event r_on_w is the
refinement of the event a_on_s, and its guards (grd1:
actionS=0 and grd2: reactionS=0) are strengthened
by grd3: actionW=1 and grd4: reactionW=0, and its
actions are refined by act3: reactionW:=1 and act4:
crW:= crW +1. This composite event describes the
fact that a weak action results in an event sequence: a
weak reaction, a strong action and eventually a strong
reaction. However, in case actionS=0∧reactionS=0
is false, that means the strong action had started but
its strong reaction has not finished yet, a weak action
results in a weak reaction only. Thus, a new event
r_on_w_false is added to record the situation, and
accordingly four another proving obligations for
invariant preservation should be proved.

Finally, the model for composite weak and strong
reaction we built has totally 42 proving obligations.
After removing all the counter variables from the
model, the pattern for composite weak & strong
reaction can be obtained as Fig.5

3.4 Pattern for weak synchronization of two

Strong reactions
Name: Wsynchronization2StrongReactions
Problem: As far as the synchronization of two strong
action-reaction blocks is concerned, two kinds of
synchronizations could be identified, which can be
recognized as weak synchronization and strong
synchronization. When a system requires that, the
prerequisite the second strong reaction s can be set in
on state is that the first strong reaction r have already
been set in on state, but neither constrains how many
times the s is set to on nor requests what state the r
will be if the s is off. This is what we called weak
synchronization of two strong reactions.
Solution: The initial model for weak synchronization
of two strong reactions can be built by, firstly
incorporating the two strong reaction models so that
the variables, invariants and events of the model are
the union of two strong reactions but some names are
renamed to differentiate the two reactions, and then
adding the synchronization invariant dbl1_1: s=1 =>
r=1 into the model to describe the fact that the strong
reaction s are synchronous weakly with the strong
reaction r, as it is shown in Fig.6.

After the weak synchronization invariant dbl1_1
was introduced into the model, the event r_off_s and
s_on_s fail to preserve dbl1_1. To guarantee the
model maintains dbl1_1 correctly, a series of

refinements have to be finished, in which some new
invariants need to be added and some events need to
be modified. In the end, three invariants:

 dbl1_2: b=1 => r=1
dbl1_3: a=0 => r=1
dbl1_4: a=0 => b=0

are appended into the model. The event a_off_s is
refined by strengthening its guards with grd13: s=0
and grd14: b=0, and event b_on_s is refined by
strengthening its guards with grd13: r=1 and grd14:
a=1.

MACHINE
WSynchronization2StrongReactions

VARIABLES
a,r,b,s

INVARIANTS
dbl0_1 : a ∈ {0,1}
dbl0_2 : r ∈ {0,1}
dbl0_7 : b ∈ {0,1}
dbl0_8 : s ∈ {0,1}
dbl1_1 : s=1 => r=1
dbl1_2 : b=1 => r=1
dbl1_3 : a=0 => s=0
dbl1_4 : a=0 => b=0

EVENTS
INITIALISATION ≡ WHICH IS ordinary

BEGIN
act1 : a ≔ 0
act2 : r ≔ 0
act5 : b ≔ 0
act6 : s ≔ 0

END
a_on_s ≙
a_off_s ≙ WHICH IS ordinary

WHEN
grd11 : a = 1
grd12 : r = 1
grd13 : s = 0
grd14 : b = 0

THEN
act11 : a ≔ 0

END
r_on_s ≙
r_off_s ≙
b_on_s ≙ WHICH IS ordinary

WHEN
grd11 : b = 0
grd12 : s = 0
grd13 : r = 1
grd14 : a = 1

THEN
act11 : b ≔ 1

END
b_off_s ≙
s_on_s ≙
s_off_s ≙

END

Fig.6 Pattern for weak synchronization of two
strong reactions

 The last model for weak synchronization of two
strong reactions has 20 new proving obligations that

WSEAS TRANSACTIONS on SYSTEMS Xin Ben Li, Feng Xia Zhao

ISSN: 1109-2777 1467 Issue 12, Volume 7, December 2008

have been discharged automatically, in addition to
2*20 old proving obligations for two strong reactions.
So, the pattern for weak synchronization of two
strong reactions are found if all the counter variables
for modeling and related invariants are removed from
the model, and it is shown in the Fig.6.

3.5 Pattern for Strong synchronization of

two Strong reactions
Name: Ssynchronization2StrongReaction
Problem: Another kind of synchronization between
two strong action-reaction blocks is so-called strong
synchronization of two strong reactions. What the
problem with the weak synchronization of two strong
reactions is that, although it satisfies the prerequisite
that the first strong reaction r will have been in on
state whenever the second strong reaction s is going
to be on, it neither constrains how many times s can
be set in on nor requests what states r will go while s
is in off state. The strong synchronization between
two strong action-reaction blocks really means that
the second reaction s will strictly run after the first
reaction r, which reacts to the first action a and
changes its value into on or off regularly.
Solution: The model for the strong synchronization
of two strong reactions can be built by refining the
weak synchronization model. As a matter of fact, the
strong synchronization can be formalized by two
predicate expressions ca=cb∨ca=cb+1 and cr=cs
∨cr=cs+1, where ca and cr are counters variables
for the first action and reaction respectively, and cb
and cs are for the second. In order for the refined
model to satisfy the two expressions, a new variable
m is introduced into the model, and seven new
invariants:

dbl2_1 : m ∈ {0,1}
dbl2_2 : m=1 => ca=cb+1
dbl2_3 : m=0 => ca=cb
dbl2_4 : r=1∧s=0∧(m=1∨b=1) => cr=cs+1
dbl2_5 : r=1∨s=0∨(m=1∧b=1) => cr=cs
dbl2_6 : r=1∧a=0 => m=0
dbl2_7 : m=1 => s=0

are appended gradually into the model to constrain
the synchronization conditions and simplify the
model proving. Meanwhile, the event a_on_s is
refined by a new action act13 : m:=1 and the guards
of event a_off_s is strengthened by grd15: m=0 , and
the event b_on_s is refined by a new action act13 :
m:=0 and a strengthened guard grd15: m=1. The
final model for the strong synchronization has 38
new proving obligations that have been discharged
automatically or manually, except for the old 60
proving obligations that have been proved in the
weak synchronization.

Similarly, if all the counter variables and related
invariants are removed from the model, we have the
pattern for the strong synchronization of two strong
reactions as in Fig.7.

Fig.7 Pattern for strong synchronization of two

strong reactions

MACHINE
Ssynchronization2StrongReactions

VARIABLES a,r,b,s
INVARIANTS

dbl0_1 : a ∈ {0,1}
dbl0_2 : r ∈ {0,1}
dbl0_7 : b ∈ {0,1}
dbl0_8 : s ∈ {0,1}
dbl1_1 : s=1 => r=1
dbl1_2 : b=1 => r=1
dbl1_3 : a=0 => s=0
dbl1_4 : a=0 => b=0
dbl2_1 : m ∈ {0,1}
dbl2_6 : r=1∧a=0 => m=0
dbl2_7 : m=1 => s=0

EVENTS
INITIALISATION ≡ WHICH IS ordinary

BEGIN
act1 : a ≔ 0
act2 : r ≔ 0
act5 : b ≔ 0
act6 : s ≔ 0
act9 : m ≔ 0

END
a_on_s ≙ WHICH IS ordinary

WHEN
grd11 : a = 0
grd12 : r = 0

THEN
act11 : a ≔ 0
act13 : m ≔ 1

END
a_off_s ≙ WHICH IS ordinary

WHEN
grd11 : a = 1
grd12 : r = 1
grd13 : s = 0
grd14 : b = 0
grd15 : m = 0

THEN
act11 : a ≔ 0

END
r_on_s ≙
r_off_s ≙
b_on_s ≙ WHICH IS ordinary

WHEN
grd11 : b = 0
grd12 : s = 0
grd13 : r = 1
grd14 : a = 1
grd15 : m = 1

THEN
act11 : b ≔ 1
act13 : m ≔ 0

END
b_off_s ≙
s_on_s ≙
s_off_s ≙

END

WSEAS TRANSACTIONS on SYSTEMS Xin Ben Li, Feng Xia Zhao

ISSN: 1109-2777 1468 Issue 12, Volume 7, December 2008

4 Using Event-B Patterns To Develop
the Controller Model for Washing
Machine
In object-oriented technology, a design pattern is
general reusable solution to a commonly occurring
problem in software design, and using design
patterns can result in adapting and incorporating
some pre-defined pieces of codes in a software
project. In formal methods of software development,
formal design patterns could also be applied to adapt
and incorporate pre-defined proved and refined
mini-model into a large one. Although the formal
Event-B design patterns we presented in the previous
section are focused on reactive systems and may be
only a part of them, they are very significant while
developing a controller for an automatic washing
machine.

4.1 Informal Description of the controller

for Washing Machine
A washing machine must sense various inputs and
perform a wash cycle by timing and controlling
outputs. Fig.8 is a simplified diagram for the washing
machine. Since the washing machine controller is a
typical reactive discrete-state process control system,
the task structure for the controller is shown in Fig.9.
It should be noted that the safety of the controller is
of specific significant. Hardware interlocks (or
control task synchronizes), such as a switch that cuts
off the motor and prevents the washing machine’s tub
from rotating when lid is open, should be used for
wherever possible.

Fig.8 Washing Machine Diagram

Some of the sequence of events through which the
controller accomplishes some washing cycle might
be as follows:

 (1) The user presses the ‘Start’ button to start
the cycle.

(2) The lid is put down so that the lock is closed.
(3) The water valve is opened to allow water

into the washing tub. When the ‘Full water level’ is
sensed, the water valve is closed.

Controller

User
Interface

Water Valve
Control

Drain Valve
Control

Fig.9 Washing Machine Diagram

(4) The washer motor is turned on to rotate the
tub. The motor then goes through a series of
movements, both forward and reverse (at various
speeds) to wash the clothes. (The precise set of
movements carried out depends on the wash program
that user has selected.) At the end of the wash cycle,
the motor is stopped.

 (5) The drain water valve is opened to drain the
rub. When the tub is empty, the valve is closed.

(6) The motor is turned on to spin the rub for a
while, and then the motor is turned off.

4.2 Requirements of the Controller
The controller we are going to develop is a piece of
software connected to some equipment. Some
requirements related to environmental equipments
include following three statements marked EQP-1,
EQP-2 and EQP-3.

Some functional requirements and/or connection
constraints are described in following five
statements.

A controller is supposed to manage this
equipment. EQP-2

Motor
Control

Safety
Checks

Level
Sensor

Buttons
&Display

Water
Valve

Drain
Valve Motor

Safety
Devices Sensors

The controller has got the following pieces of
Equipment: a Motor, a Lid, a water inlet Valve, EQP-1
and a Drain water valve.

Two Buttons are used to start /stop the Motor,
and the Lid bar can be lifted up or put down. EQP-3

Buttons and Controller are weak syncronized FUN-1

WSEAS TRANSACTIONS on SYSTEMS Xin Ben Li, Feng Xia Zhao

ISSN: 1109-2777 1469 Issue 12, Volume 7, December 2008

Some safety requirements include following three
statements marked SAF-1 and SAF-2.

4.3 Development of the Controller Model by

using Design patterns
The basic roadmap for building the controller model
is that create the initial model by instantiating the
Action&WeakReaction pattern so that the start and
pause/stop buttons are connected to the controller and
the FUN-1 is specified. Then the model is refined
step by step by using Event B design patterns and
refinements, and by connecting one piece of
equipment and/or realizing a system function.

For the initial model (requirement FUN-1), its
state can be defined as following:

The behaviors of the initial model can be instantiated
by re-using Action&WeakReaction pattern twice so
that the Start and Stop/pause Button are connected to
the controller.

So we have the initial Event-B model for the
controller as Fig. 9

Controller and Equipment are strongly
syncronized FUN-2

actionW → stop_ wash_button
reactionW → stop_ wash_impulse

0 → FALSE
1 → TRUE

a_on_w → push_stop_ wash_button
a_off_w → release_stop_ wash_button
r_on_w → treat_push__stop_ wash_button
r_off_w → treat_release_stop_ wash_button

When water Valve is open, the Motor is stopped.
Before the Motor is working, the Level Sensor FUN-3
must be full

When Motor is working, the drainValve must SAF-1
be bolted

When Motor is working, the Lid must put down SAF-2

Fig.9 Initial Event-B model of the controller VARIABLES:
 start_wash_button
 start_wash_impulse
 stop_wash_button
 stop_wash_impulse
INVARIANTS:
 inv1: start_wash_button ∈BOOL
 inv2: start_wash_impulse ∈BOOL
 inv3: stop_wash_button ∈BOOL
 inv4: stop wash impulse ∈BOOL

The first refinement of the model is to connect the
motor to controller. Here, a context ctx1 is needed to
define the status of the motor as follow:

After extend the state of initial model by defining
new variables motor_actuator and motor_sensor as
well as the related invariants, we instantiate the
action&StrongReaction pattern by:

SETS: MOTOR_STATUS
CONSTANTS: working, stopped
AXIOMS:

axm1: MOTOR_STATUS ={ working, stopped}
axm2: working ≠ stopped

actionW → start_ wash_button
reactionW → start_ wash_impulse

0 → FALSE
1 → TRUE

a_on_w → push_start_wash_button
a_off_w → release_start_wash_button
r_on_w → treat_push_start_wash_button
r off w → treat release start wash button

actionS → motor_actuator
reactionS → motor_sensor

0 → stopped
1 → working

a_on_s → treat_start_wash
a_off_s → treat_stop_wash
r_on_s → wash_start
r_off_s → wash_stop

WSEAS TRANSACTIONS on SYSTEMS Xin Ben Li, Feng Xia Zhao

ISSN: 1109-2777 1470 Issue 12, Volume 7, December 2008

While refining event treat_start_wash and treat_
stop_wash, the Pattern for Composite Weak and
Strong reactions should be applied, since the
controller reacts weakly to user’s push of Start/Stop
button (FUN-1) but washer should strongly
synchronize the controller (FUN-2) instructions to
start or Stop the washer. Fig.10 gives the first
refinement machine wash1.

Fig.10 The first refinement of the controller

The second refinement of the model is to connect the
water inlet valve, drain water bolt and lid onto the
controller (it may also be dealt with a series of
refinements to connect them onto the controller one
after another). Since the FUN-2 requests that
Controller and Equipment are strongly
synchronization, the refinement of the controller
model in this step can be handled by means of
re-using the strong reaction pattern three times to
deal with the valve, drain bolt or lid, which are
similar to the motor we did during the first refinement.
In the first place, a new context ctx2 is extended from
the ctx1 to define the type sets and constants used by
the water valve, drain bolt and lid. Axioms are
defined also in the ctx2 to constrain properties of the
sets and constants. Fig.11 is a summary of the ctx2.
As far as the machine is concern, the refined machine
wash2 includes 12 variables, 12 invariants and 24
events totally, half of which are new for the

connecting equipments and the other of which are
derived from the abstract machine wash1.

Fig.11 The context ctx2 for the 2nd refinement

CONTEXT ctx2
EXTENDS ctx1
SETS VLAVE, DRAIN, LID
CONSTANTS close,open,bolt,unbolt,up,down
AXIOMS

 axm1: VALVE = {close,open}
axm2: close ≠ open
axm3: DRAIN = {bolt,unbolt}
axm4: bolt ≠ unbolt
axm5: LID = {up,down}
axm6: up ≠ down

END

The third refinement of the model is to cope with the
functional requirement FUN-3, which requests that
the water inlet valve should synchronize the washing
motor, and the drain water bolt do the spinning motor.
These all are weak synchronizations between two
strong reactions, therefore the pattern for weak
synchronization will be applied. As a result, the
relatively abstract machine wash2 is refined into a
more concrete machine wash3, which 8 new
invariants for synchronization are appended and 4
events are modified. With respect to the context,
there is no new one during the refinement of wash3. It
still sees the ctx2.

Fig.12 The context ctx2 for the 2nd refinement

The fourth (and last) refinement is about the safety
requirement SAF-1 and SAF-2, which claim that the
drain valve must be bolted when Motor is washing or
the Lid must put down if the motor is spinning. These
can be considered as strong synchronization
relationship between two strong reactions. Applying
the pattern for strong synchronization of two strong
reactions to the machine wash3, we have the refined
machine wash4 as shown in Fig.12, there the last two
machines have some proving obligations that had
been discharged automatically.

WSEAS TRANSACTIONS on SYSTEMS Xin Ben Li, Feng Xia Zhao

ISSN: 1109-2777 1471 Issue 12, Volume 7, December 2008

5 Conclusion
Formal methods approach to software construction
can significantly increase the reliability and
correctness of the resulting software, but formal
methods users often lack some systematic
methodological measures to help. In object-oriented
technology, using design patterns can result in
adapting and incorporating some pre-defined pieces
of codes in a software project. Event-B design
patterns play a similar role in the formal development
of complex reactive systems, so that the development
process can be accelerated by re-use some
pre-defined proved and refined mini-models.

In this paper some Event-B design patterns are
presented and applied to specifying the controller
model of a washing machine. Although it may be
possible not to use design patterns specifying the
controller model even the reactive systems, the usage
of the formal design patterns leads to a rigorous and
systematic development. This will be quite helpful if
the target software is critical systems. Other patterns
for refinement and interaction among patterns are
possible directions for future work.

References:
[1] Wen YJ, Wang J, Qi ZC. , Compositional Model

Checking and Compositional Refinement
Checking of Concurrent Reactive Systems,
Journal of Software, Vol.18, No.6, June 2007,
pp.1270−1281 (in Chinese with English abstract).

[2] J.R. Abrial, M. Butler, S. Hallestede, L. Voisin.
An open extensible tool environment for Event-B .
In Z.Liu and J.He(Eds): Formal Methods and
Software Engineering-ICFEM2006, LNCS 4260
pp588-605,2006.

[3] E Ball, M Butler, Event-B patterns for Specifying
Fault-Tolerance in Multi-Agent Interaction, in
Proceedings of Workshop on Methods, Models
and Tools for Fault Tolerance, 2007,

[4] Gamma, E., Helm, R., Johnson, R., Vlissides, J.:
Design patterns: elements of reusable
object-oriented software. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA ,
1995.

[5] B. P. Douglass, Real-Time Design Patterns:
Robust Scalable Architecture for real-Time
Systems, Pearson Education, Inc, 2003, Chinese
Simplified language edition, Beijing University
of Aeronautics and Astronautics Press, 2004.

[6] J.R. Abrial and Thai Son Hoang, Using Design
Patterns in Formal Methods: An Event-B
Approach (Extended Abstract), in J.S.Fitzgerald,
A.E.Haxthausen and H.Yenigun (Eds).
Theoretical Aspects of Computing – ICTAC 2008,

Volume 5160 of Lecture Notes in Computer
Science. Springer, Berlin (2008), pp1–2.

[7] B. Arief, A. Iliasov, and A. Romanovsky,
Rigorous Development of Ambient Campus
Applications that Recover from Errors.
Proceedings of the International Conference on
Integrated Formal Methods 2007 (IFM 2007), pp.
103-110, 3 July 2007.

[8] Jean-Raymond Abrial and Stefan Hallerstede.
Refinement, decomposition and instantiation of
discrete models: Application to Event-B.
Fundamentae Informatica, Volume 77, Number
1-2 / 2007.

 [9] D.M.Auslander, J.R.Ridgely, J.D.Ringgenberg
Control Software for Mechanical Systems:
Objected-Oriented Design in a Real-Time World,
Pearson Education Asia Limited and Tsinghua
University Press, 2004

WSEAS TRANSACTIONS on SYSTEMS Xin Ben Li, Feng Xia Zhao

ISSN: 1109-2777 1472 Issue 12, Volume 7, December 2008

