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Abstract: - Formal methods approach to software construction can significantly increase the reliability and 
correctness of the resulting software. Formal methods users are given sophisticated languages and tools for 
constructing software models, but they often lack some systematic methodological measures to help.  Formal 
design patterns can help formal methods users speed up the development process by re-using and incorporating 
some pre-defined proved and refined models, as design patterns do in object-oriented software. Some formal 
design patterns are presented and applied to the development of a washing machine controller model in Event-B 
that is a formal method for modeling and reasoning about complex discrete system. 
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1   Introduction 
Reactive systems are a class of software and/or 
hardware systems whose role is to maintain an 
ongoing interaction with their environment rather 
than produce some final value upon termination. 
Such systems are often critical systems, as errors 
occurring during their execution may have dramatic 
economical or human consequences. Typical 
examples of reactive systems are embedded systems, 
computer operating systems, communication 
protocols, or process control systems such as a 
nuclear reactor [1].  

Formal methods are the application of 
mathematics to model and verify software or 
hardware systems [2]. The main advantages of the 
formal methods approach to software or systems 
construction is that, whenever applicable, it can lead 
to an increase of the reliability and correctness of the 
resulting software or systems by several orders of 
magnitude. Event-B is a formal method for modeling 
and reasoning about systems based on set theory and 
predicate logic. It uses refinement to represent 
systems at different abstraction levels and uses 
mathematical proof to verify consistency between 
refinement levels. The Event-B method has been 
devised for modeling reactive and distributed 
systems [3]. However, formal methods have been 
criticized for their lack of accessibility especially for 
novice users.  

Design patterns in object-oriented software are a 
way of communicating expertise by capturing the 

solutions to similar design problems and re-using 
those solutions [4]. Introducing design patterns 
within formal methods can help users of formal 
methods speed up the development process by 
re-using some pre-defined proved and refined 
mini-models. We in this paper present some Event-B 
design patterns that can be used for specifying those 
reactive systems. The design patterns are constructed 
deliberately and proved correctly. They can be 
re-used to specify the behaviour as part of a 
specification of any reactive system. A case is given 
to show the application of the design patterns in 
formal Event-B method. This was done within the 
framework of the Rodin Platform that is an open tool 
set and provides effective support for refinement and 
mathematical proof [3]. 
 
 
2 Event-B Method 
Event-B is a formal method for system-level 
modelling and analysis. It is designed for 
long-running reactive hardware/software systems 
that respond to stimuli from user and/or environment. 
The set-theoretic language in first-order logic takes 
as semantic model a transition system with guarded 
transitions between states. The correctness of a 
model is defined by an invariant property, i.e. a 
predicate, or constraint, which every state in the 
system must satisfy. More practically, every event in 
the system must be shown to preserve this invariant; 
this verification requirement is expressed in a number 
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of proof obligations (POs). This verification is 
performed either by model checking or theorem 
proving (or both). 
    An Event-B model consists of contexts and 
machines. Contexts contain the static parts of a model. 
These are sets, constants and axioms that describe the 
properties of these sets and constants. Machines 
contain the dynamic parts of a model. A machine is 
made of a state, which is defined by means of 
variables. Variables, like constants, correspond to 
simple mathematical objects: sets, binary relations, 
functions, numbers, etc. They are constrained by 
invariants I(v) where v are the variables of the 
machine. Invariants are supposed to hold whenever 
variable values change, but this must be proved first. 
    Besides its state, a machine also contains a 
number of events that show the way it may evolve. 
Each event is composed of a guard and an action. The 
guard is the necessary condition under which the 
event may occur. The action determines the way in 
which the state variables are going to evolve when 
the event occurs. An event may be executed only 
when its guard holds. Events are atomic and when the 
guards of several events hold simultaneously, then at 
most one of them may be executed at any one 
moment. The choice of event to be executed is 
non-deterministic [2]. 

In order to progress towards implementation, the 
process of refinement is used in Event B. A 
refinement is a (usually) more elaborate model than 
its predecessor. The refinement of a context is simply 
the addition of new sets, constants and axioms to it. 
The refinement of a machine consists of refining its 
state variables and its events. All state variables v are 
replaced by new ones w, some simply by renaming - 
i.e. of the same type and meaning - and others by 
variables of different type. Existing events are 
transformed to work on the new variables. New 
events can be defined; that is, the behaviour of an 
abstract event E can be refined by some sequence of 
E and new events. The new behaviour will usually 
reduce nondeterminism.  
   More details about Event B can be seen in [3]. 
 
 
3   Event-B Patterns  
The purpose of a design pattern is to capture 
structures and decisions within a design that are 
common to similar modeling and analysis tasks. 
They can be re-applied when undertaking similar 
tasks to in order reduce the duplication of effort [4]. 

Reactive systems are characterized by the fact that 
their behavior is defined in terms of reactions to input 
events (or actions). Sequences of inputs are 

recognized, and outputs can be emitted in response. 
So, the most basic elements in reactive systems are 
action and reaction, action-reaction relations as well 
as the interactions between action-reaction pairs. The 
action can be viewed as an abstraction of an input 
command from environment, such as a start impulse 
signal, a login request, or an output instruction to the 
controlled agent. We recognized the following five 
design patterns when modeling this kind of systems 
according to the relationship between the action and 
corresponding reaction. The design pattern described 
in this paper is an Event-B model.  
 
 
3.1 Pattern for Action and Weak Reaction 
Name: Action&WeakReaction 
Problem: When an action is emitted, a reaction 
should start in response to the action. If the action 
stops to stimulate sequentially, the reaction should 
also follow it to stop.  However, the reaction 
sometimes has not enough time to react, because the 
action moves too quickly (the continuance of an 
action is too short, or the interval between actions is 
too short). This is so-called action and weak reaction. 
Solution: The initial model for action and reaction is 
made of a state and some events. The state includes 
two variable, actionW and reactionW that denote the 
action and reaction respectively, and two invariant 
INV0_1 and INV0_2 that are used to constrain the 
variable’s type to be set {0,1}. The essence of action 
and weak reaction is that the number of reactions is 
less than the actions’. To formalize the model for 
action and weak reaction, two new variable caW and 
crW are introduced within the initial model to count 
the exact times that action and reaction is set to 1. Of 
course, two new invariant INV0_3 and INV0_4 are 
needed to constrain the type of caW and crW to be 
natural number only. The real weak reaction relation 
in a  action-reaction block is described by the third 
new invariant INV0_5: crW ≤ caW.  

 
Fig.1 Proving perspective for action&WeakReaction 
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In addition to the initialization event, four events 
a_on_w, a_off_w, r_on_w and r_off_w are used to 
describe the behaviors of action and reaction. The 
event a_on_w simply sets variable actionW to 1 and 
increases the counter variable caW by 1 when its 
guard satisfies actionW=0. The event a_off_w only 
sets variable actionW to 0 when its guard satisfies 
actionW=1.The event r_on_w and r_off_w are 
similar.  

The model, at this moment, with four variable, five 
invariants and four events seems to be built 
completely. However, the proving perspective of 
Event B shows that the event r_on_w fails to preserve 
the invariant INV0_5, as shown in Fig.1, which 
means something in our model is wrong or 
incomplete. To guarantee the model is built correctly, 
while proving invariant preservation by event 
r_on_w, another new invariant INV0_6: 
reactionW=0∧actionW=1 => crW ＜ caW has to be 
added. Thus, the model for weak reaction is specified 
correctly because all 18 Proving Obligation has been 
proved and discharged automatically.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.2 Pattern for action&WeakReaction 

After removing the counter variable caW, crW and 
pertinent invariants as well as action of events from 
the model, which were introduced for modeling only, 
we have the pattern for action and weak reaction as 
shown in Fig.2. 
 
 
3.2 Pattern for Action and Strong Reaction 
Name: Action&StrongReaction 
Problem: In addition to the action and weak reaction 
described above, in some situations, we hope that the 
reaction could always follow the action’s movement 
on and off, that is to say, the reaction and action can 
always keep synchronization. This is so-called action 
and strong reaction. 
Solution: The model for action and strong reaction 
can be built by refine the model for action and weak 
reaction. The synchronization relation between 
action and strong reaction requires that the next 
action should not start before the reaction that tracked 
the previous action finished. This requirement can be 
formalized by a new invariant INV1_1: caW ≤ 
crW+1, based on the model for weak reaction.   MACHINE  Action&WeakReaction 

VARIABLES  actionW, reactionW 
INVARIANTS 

INV0_1 : actionW ∈ {0,1} 
INV0_2 : reactionW ∈ {0,1} 

EVENTS 
INITIALISATION ≙ WHICH IS ordinary  
BEGIN   

act1 : actionW = 0 
act2 : reactionW = 0 

END 
a_on_w ≙ WHICH IS ordinary _  
WHEN 

grd1 : actionW = 0 
THEN 

act1 : actionW ≔ 1 
END 

a_off_w   ≙ WHICH IS ordinary  
WHEN 

grd1 : actionW = 1 
THEN 

act1 : actionW = 0 
END 

r_on_w ≙ WHICH IS ordinary  
WHEN 

grd1 : actionW = 1 
grd2 : reactionW = 0 

THEN 
act1 : reactionW = 1 

END 
r_off_w ≙ WHICH IS ordinary  
WHEN 

grd1 : actionW = 0 
grd2 : reactionW = 1 

THEN 
act1 : reactionW = 0 

END 
END 

To make this invariant is preserved by all events, 
the invariant INV0_5, INV0_6 and INV1_1 are 
modified into INV2_1: reactionW=0∧actionW=1 
=> caW = crW+1 and INV2_2: actionW=0 ∨ 
reactionW=1 => caW = crW, at the same time, the 
guards of event a_on_w and a_off_w are 
strengthened by predicate reactionW=0 and 
reactionW=1 respectively. At this stage, we have 20 
Proving Obligations that have been proved 
automatically for this model as Fig.4 below. 

 
Fig.3 Proving Obligation for action&StrongReaction 
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Thus, we have the pattern for action and strong 
reaction as showed in Fig.4 where the counter 
variable caW, crW and pertinent invariants as well as 
action of events are removed from the model, and 
some names for variable and event are changed to 
symbolize the strong reaction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Pattern for action&StrongReactions 
 
 
3.3 Pattern for Composite Weak and Strong 

reactions  
Name: CompositeWeak&StrongReactions 
Problem: Action and Reaction (weak or strong) are 
only the basic blocks for modeling discrete event 
system. In most cases, system to be modeled has 
some complex situations to handle, because functions 
of a large complex system depend on some sequences 
of events, in which some events may be of 
action-reaction relation (even a action-reaction 
chains) and some may occur simultaneously. The 
interaction between two action-reaction blocks can 

be modeled as composite or synchronization, which 
depend on that the two blocks are of weak-strong 
reactions or strong-strong reactions. When the weak 
reaction of a specific action-reaction block results 
eventually in the specific strong reaction of some 
action-reaction, it can be recognized as the composite 
for weak and strong reactions. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Pattern for composite weak & strong reaction 
 
Solution: The model for composite weak and strong 
reaction can be built by refinement of the strong 
reaction model. The variables, invariants and events 
of the refined model are the union set of strong 
reaction model and weak reaction model respectively, 
but the event a_on_s of strong reaction model need to 
be refined by event r_on_w of weak reaction model.  
What the composite really means is that the weak 

MACHINE  Composite_Weak&Strong_Reaction 
VARIABLES   

actionW,reactionW, 
actionS,reactionS,... 

INVARIANTS 
INV1_1 : actionW ∈ {0,1} 
INV1_2 : reactionW ∈ {0,1} 
INV1_3 : actionS ∈ {0,1} 
INV1_4 : reactionS ∈ {0,1} 
...... 

EVENTS 
INITIALISATION  ≙ WHICH IS ordinary  
BEGIN   
act1 : actionW = 0 
act2 : reactioW = 0 
act3 : actionS = 0 
act4 : reactioS = 0 
... 

END 
a_off_s  ≙ ... 
r_on_s   ≙ ... 
r_off_s  ≙ ... 
a_on_w   ≙ ... 
a_off_w  ≙ ... 
r_on_w ≙ WHICH IS ordinary  
REFINES a_on_s 
WHEN 

ggrrdd1144  ::  aaccttiioonnWW  ==  11  
ggrrdd1133  ::  rreeaaccttiioonnWW  ==  00  
ggrrdd1111  ::  aaccttiioonnSS  ==  00  
ggrrdd1122  ::  rreeaaccttiioonnSS  ==  00  

THEN 
aacctt1111  ::  rreeaaccttiioonnWW  ==  11  
aacctt1122  ::  aaccttiioonnSS  ==  11  

END 
rr__oonn__ww__ffaallssee  ≙  WWHHIICCHH  IISS  oorrddiinnaarryy    
WWHHEENN  

ggrrdd1111  ::  aaccttiioonnWW  ==  11  
ggrrdd1122  ::  rreeaaccttiioonnWW  ==  00  
ggrrdd1133  ::  ┓┓((aaccttiioonnSS==00∧∧rreeaaccttiioonnSS==00))  

TTHHEENN  
aacctt1111  ::  rreeaaccttiioonnWW  ==  11  

EENNDD  
r_off_s ≙ ... 

END 

MACHINE  Action&StrongReaction 
VARIABLES  actionS,reactionS, 
INVARIANTS 

INV1_1 : actionS ∈ {0,1} 
INV1_2 : reactionS ∈ {0,1} 

EVENTS 
INITIALISATION   ≙ WHICH IS ordinary  
BEGIN   

act1 : actionS = 0 
act2 : reactionS = 0 

END 
a_on_s   ≙ WHICH IS ordinary  
WHEN 

grd1 : actionS = 0 
ggrrdd22  ::  rreeaaccttiioonnSS  ==  00 

THEN 
act1 : actionS = 1 

END 
a_off_s   ≙ WHICH IS ordinary  
WHEN 

grd1 : actionS = 1 
ggrrdd22  ::  rreeaaccttiioonnSS  ==  11  

THEN 
act1 : actionS = 0 

END 
r_on_s   ≙ WHICH IS ordinary  
WHEN 

grd1 : actionS = 1 
grd2 : reactionS = 0 

THEN 
act1 : reactionS = 1 

END 
r_off_s   ≙ WHICH IS ordinary  
WHEN 

grd1 : actionS = 0 
grd2 : reactionS = 1 

THEN 
act1 : reactionS = 0 

END 
END 
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reaction will eventually results in the strong reaction 
that is stimulated by the strong action, so the 
refinement of event a_on_s can be obtained by 
superpose the event r_on_w of weak reaction model 
onto it. That is to say, the event r_on_w is the 
refinement of the event a_on_s, and its guards (grd1: 
actionS=0 and grd2: reactionS=0) are strengthened 
by grd3: actionW=1 and grd4: reactionW=0, and its 
actions are refined by act3: reactionW:=1 and act4: 
crW:= crW +1. This composite event describes the 
fact that a weak action results in an event sequence: a 
weak reaction, a strong action and eventually a strong 
reaction. However, in case  actionS=0∧reactionS=0 
is false, that means the strong action had started but 
its strong reaction has not finished yet, a weak action 
results in a weak reaction only. Thus, a new event 
r_on_w_false is added to record the situation, and 
accordingly four another proving obligations for 
invariant preservation should be proved.  

Finally, the model for composite weak and strong 
reaction we built has totally 42 proving obligations. 
After removing all the counter variables from the 
model, the pattern for composite weak & strong 
reaction can be obtained as Fig.5 
 
 
3.4 Pattern for weak synchronization of two 

Strong reactions  
Name: Wsynchronization2StrongReactions 
Problem: As far as the synchronization of two strong 
action-reaction blocks is concerned, two kinds of 
synchronizations could be identified, which can be 
recognized as weak synchronization and strong 
synchronization. When a system requires that, the 
prerequisite the second strong reaction s can be set in 
on state is that the first strong reaction r have already 
been set in on state, but neither constrains how many 
times the s is set to on nor requests what state the r 
will be if the s is off. This is what we called weak 
synchronization of two strong reactions. 
Solution: The initial model for weak synchronization 
of two strong reactions can be built by, firstly 
incorporating the two strong reaction models so that 
the variables, invariants and events of the model are 
the union of two strong reactions but some names are 
renamed to differentiate the two reactions, and then 
adding the synchronization invariant dbl1_1: s=1 => 
r=1 into the model to describe the fact that the strong 
reaction s are synchronous weakly with the strong 
reaction r, as it is shown in Fig.6.  

After the weak synchronization invariant dbl1_1 
was introduced into the model, the event r_off_s and 
s_on_s fail to preserve dbl1_1. To guarantee the 
model maintains dbl1_1 correctly, a series of 

refinements have to be finished, in which some new 
invariants need to be added and some events need to 
be modified. In the end, three invariants: 

 dbl1_2: b=1 => r=1  
dbl1_3: a=0 => r=1 
dbl1_4: a=0 => b=0 

are appended into the model. The event a_off_s is 
refined by strengthening its guards with grd13: s=0 
and grd14: b=0, and event b_on_s is refined by 
strengthening its guards with grd13: r=1 and grd14: 
a=1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MACHINE 
WSynchronization2StrongReactions 

VARIABLES 
a,r,b,s 

INVARIANTS 
dbl0_1 : a ∈ {0,1} 
dbl0_2 : r ∈ {0,1} 
dbl0_7 : b ∈ {0,1} 
dbl0_8 : s ∈ {0,1} 
dbl1_1 : s=1 => r=1 
dbl1_2 : b=1 => r=1 
dbl1_3 : a=0 => s=0 
dbl1_4 : a=0 => b=0 

EVENTS 
INITIALISATION   ≡ WHICH IS ordinary

BEGIN   
act1 : a ≔ 0 
act2 : r ≔ 0 
act5 : b ≔ 0 
act6 : s ≔ 0 

END 
a_on_s  ≙ ...... 
a_off_s ≙ WHICH IS ordinary  

WHEN 
grd11 : a = 1 
grd12 : r = 1 
grd13 : s = 0 
grd14 : b = 0 

THEN 
act11 : a ≔ 0 

END 
r_on_s  ≙ ...... 
r_off_s ≙ ...... 
b_on_s  ≙ WHICH IS ordinary  

WHEN 
grd11 : b = 0 
grd12 : s = 0 
grd13 : r = 1 
grd14 : a = 1 

THEN 
act11 : b ≔ 1 

END 
b_off_s ≙ ...... 
s_on_s  ≙ ...... 
s_off_s ≙ ...... 

END 

Fig.6 Pattern for weak synchronization of two 
strong reactions  

 
    The last model for weak synchronization of two 
strong reactions has 20 new proving obligations that 
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have been discharged automatically, in addition to 
2*20 old proving obligations for two strong reactions. 
So, the pattern for weak synchronization of two 
strong reactions are found if all the counter variables 
for modeling and related invariants are removed from 
the model, and it is shown in the Fig.6.  
 
 
3.5 Pattern for Strong synchronization of 

two Strong reactions  
Name: Ssynchronization2StrongReaction 
Problem: Another kind of synchronization between 
two strong action-reaction blocks is so-called strong 
synchronization of two strong reactions. What the 
problem with the weak synchronization of two strong 
reactions is that, although it satisfies the prerequisite 
that the first strong reaction r will have been in on 
state whenever the second strong reaction s is going 
to be on, it neither constrains how many times s can 
be set in on nor requests what states r will go while s 
is in off state. The strong synchronization between 
two strong action-reaction blocks really means that 
the second reaction s will strictly run after the first 
reaction r, which reacts to the first action a and 
changes its value into on or off regularly. 
Solution: The model for the strong synchronization 
of two strong reactions can be built by refining the 
weak synchronization model. As a matter of fact,  the 
strong synchronization can be formalized by two 
predicate expressions ca=cb∨ca=cb+1 and  cr=cs
∨cr=cs+1, where ca and cr are counters variables 
for the first action and reaction respectively, and cb 
and cs are for the second. In order for the refined 
model to satisfy the two expressions, a new variable 
m is introduced into the model, and seven new 
invariants: 

dbl2_1 : m ∈ {0,1} 
dbl2_2 : m=1 => ca=cb+1 
dbl2_3 : m=0 => ca=cb 
dbl2_4 : r=1∧s=0∧(m=1∨b=1) => cr=cs+1 
dbl2_5 : r=1∨s=0∨(m=1∧b=1) => cr=cs 
dbl2_6 : r=1∧a=0 => m=0 
dbl2_7 : m=1 => s=0 

are appended gradually into the model to constrain 
the synchronization conditions and simplify the 
model proving. Meanwhile, the event a_on_s is 
refined by a new action act13 : m:=1 and the guards 
of event a_off_s is strengthened by grd15: m=0 , and  
the event b_on_s is refined by a new action act13 : 
m:=0 and a strengthened guard grd15: m=1. The 
final model for the strong synchronization has 38 
new proving obligations that have been discharged 
automatically or manually, except for the old 60 
proving obligations that have been proved in the 
weak synchronization.  

Similarly, if all the counter variables and related 
invariants are removed from the model, we have the 
pattern for the strong synchronization of two strong 
reactions as in Fig.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig.7 Pattern for strong synchronization of two 

strong reactions 

MACHINE  
Ssynchronization2StrongReactions 

VARIABLES  a,r,b,s 
INVARIANTS 

dbl0_1 : a ∈ {0,1} 
dbl0_2 : r ∈ {0,1} 
dbl0_7 : b ∈ {0,1} 
dbl0_8 : s ∈ {0,1} 
dbl1_1 : s=1 => r=1 
dbl1_2 : b=1 => r=1 
dbl1_3 : a=0 => s=0 
dbl1_4 : a=0 => b=0 
dbl2_1 : m ∈ {0,1} 
dbl2_6 : r=1∧a=0 => m=0 
dbl2_7 : m=1 => s=0 

EVENTS 
INITIALISATION   ≡ WHICH IS ordinary 

BEGIN   
act1 : a ≔ 0 
act2 : r ≔ 0 
act5 : b ≔ 0 
act6 : s ≔ 0 
act9 : m ≔ 0 

END 
a_on_s  ≙ WHICH IS ordinary  

WHEN 
grd11 : a = 0 
grd12 : r = 0 

THEN 
act11 : a ≔ 0 
act13 : m ≔ 1 

END 
a_off_s ≙ WHICH IS ordinary  

WHEN 
grd11 : a = 1 
grd12 : r = 1 
grd13 : s = 0 
grd14 : b = 0 
grd15 : m = 0 

THEN 
act11 : a ≔ 0 

END 
r_on_s  ≙ ...... 
r_off_s ≙ ...... 
b_on_s  ≙ WHICH IS ordinary  

WHEN 
grd11 : b = 0 
grd12 : s = 0 
grd13 : r = 1 
grd14 : a = 1 
grd15 : m = 1 

THEN 
act11 : b ≔ 1 
act13 : m ≔ 0 

END 
b_off_s ≙ ...... 
s_on_s  ≙ ...... 
s_off_s ≙ ...... 

END
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4 Using Event-B Patterns To Develop 
the Controller Model for Washing 
Machine  
In object-oriented technology, a design pattern is 
general reusable solution to a commonly occurring 
problem in software design, and using design 
patterns can result in adapting and incorporating 
some pre-defined pieces of codes in a software 
project.  In formal methods of software development, 
formal design patterns could also be applied to adapt 
and incorporate pre-defined proved and refined 
mini-model into a large one. Although the formal 
Event-B design patterns we presented in the previous 
section are focused on reactive systems and may be 
only a part of them, they are very significant while 
developing a controller for an automatic washing 
machine.  
 
 
4.1 Informal Description of the controller 

for Washing Machine  
A washing machine must sense various inputs and 
perform a wash cycle by timing and controlling 
outputs. Fig.8 is a simplified diagram for the washing 
machine. Since the washing machine controller is a 
typical reactive discrete-state process control system, 
the task structure for the controller is shown in Fig.9. 
It should be noted that the safety of the controller is 
of specific significant. Hardware interlocks (or 
control task synchronizes), such as a switch that cuts 
off the motor and prevents the washing machine’s tub 
from rotating when lid is open, should be used for 
wherever possible. 

 
Fig.8 Washing Machine Diagram 

 

Some of the sequence of events through which the 
controller accomplishes some washing cycle might 
be as follows: 

 (1) The user presses the ‘Start’ button to start 
the cycle. 

(2) The lid is put down so that the lock is closed. 
(3) The water valve is opened to allow water 

into the washing tub. When the ‘Full water level’ is 
sensed, the water valve is closed. 

  
 
 
 
 
 

Controller 

User 
Interface

Water Valve 
Control 

Drain Valve 
Control 

 
 
 
 

Fig.9 Washing Machine Diagram 
 

(4) The washer motor is turned on to rotate the 
tub. The motor then goes through a series of 
movements, both forward and reverse (at various 
speeds) to wash the clothes. (The precise set of 
movements carried out depends on the wash program 
that user has selected.) At the end of the wash cycle, 
the motor is stopped. 

 (5) The drain water valve is opened to drain the 
rub. When the tub is empty, the valve is closed.  

(6) The motor is turned on to spin the rub for a 
while, and then the motor is turned off. 
 
 
4.2 Requirements of the Controller 
The controller we are going to develop is a piece of 
software connected to some equipment. Some 
requirements related to environmental equipments 
include following three statements marked EQP-1, 
EQP-2 and EQP-3. 
 
 
 
   
 
 
 
 
 
 
Some functional requirements and/or connection 
constraints are described in following five 
statements. 
 
 

A controller is supposed to manage this  
equipment.                                                              EQP-2

Motor 
Control 

Safety 
Checks

Level
Sensor

Buttons 
&Display

Water 
Valve

Drain 
Valve Motor 

Safety 
Devices Sensors

The controller has got the following pieces of 
Equipment: a Motor, a Lid, a water inlet Valve,    EQP-1
and  a Drain water valve.  

Two Buttons are used to start /stop the Motor, 
and the Lid bar can be lifted up or put down.         EQP-3

Buttons and Controller are weak syncronized          FUN-1
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Some safety requirements include following three 
statements marked SAF-1 and SAF-2. 
 
 
 
 
 
 
 
 
4.3 Development of the Controller Model by 

using Design patterns 
The basic roadmap for building the controller model 
is that create the initial model by instantiating the 
Action&WeakReaction pattern so that the start and 
pause/stop buttons are connected to the controller and 
the FUN-1 is specified. Then the model is refined 
step by step by using Event B design patterns and 
refinements, and by connecting one piece of 
equipment and/or realizing a system function.  

For the initial model (requirement FUN-1), its 
state can be defined as following: 

 
 
 
 
 
 
 
 
 
 
 

The behaviors of the initial model can be instantiated 
by re-using Action&WeakReaction pattern twice so 
that the Start and Stop/pause Button are connected to 
the controller. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
So we have the initial Event-B model for the 
controller as Fig. 9 

Controller and Equipment are strongly 
syncronized                                                            FUN-2

actionW    → stop_ wash_button 
reactionW → stop_ wash_impulse 

0             → FALSE 
1             → TRUE 

a_on_w      → push_stop_ wash_button 
a_off_w     → release_stop_ wash_button 
r_on_w      → treat_push__stop_ wash_button 
r_off_w     → treat_release_stop_ wash_button 

When water Valve is open, the Motor is stopped. 
Before the Motor is working, the Level Sensor        FUN-3
must be full  

When Motor is working, the drainValve must       SAF-1
be bolted 

 

When Motor is working, the Lid must put down     SAF-2

Fig.9 Initial Event-B model of the controller VARIABLES: 
     start_wash_button 
     start_wash_impulse 
     stop_wash_button 
     stop_wash_impulse 
INVARIANTS: 
     inv1: start_wash_button   ∈BOOL 
     inv2: start_wash_impulse ∈BOOL 
     inv3: stop_wash_button   ∈BOOL 
     inv4: stop wash impulse ∈BOOL 

 
The first refinement of the model is to connect the 
motor to controller. Here, a context ctx1 is needed to 
define the status of the motor as follow: 
 
 
 
 
 
 
After extend the state of initial model by defining 
new variables motor_actuator and motor_sensor as 
well as the related invariants, we instantiate the 
action&StrongReaction pattern by: 

SETS:                MOTOR_STATUS 
CONSTANTS: working, stopped 
AXIOMS: 

axm1: MOTOR_STATUS ={ working, stopped}
axm2: working ≠ stopped 

 
 
 
 
 
 
 
 
 

actionW    → start_ wash_button 
reactionW → start_ wash_impulse 

0        → FALSE 
1        → TRUE 

 
a_on_w     → push_start_wash_button 
a_off_w    → release_start_wash_button 
r_on_w     → treat_push_start_wash_button 
r off w    → treat release start wash button

actionS    → motor_actuator 
reactionS → motor_sensor 

0         → stopped 
1 → working 
 

a_on_s    → treat_start_wash 
a_off_s   → treat_stop_wash 
r_on_s    → wash_start 
r_off_s   → wash_stop 
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While refining event treat_start_wash and treat_ 
stop_wash, the Pattern for Composite Weak and 
Strong reactions should be applied, since the 
controller reacts weakly to user’s push of Start/Stop 
button (FUN-1) but washer should strongly 
synchronize the controller (FUN-2) instructions to 
start or Stop the washer. Fig.10 gives the first 
refinement machine wash1.  

 
Fig.10 The first refinement of the controller 

 
The second refinement of the model is to connect the 
water inlet valve, drain water bolt and lid onto the 
controller (it may also be dealt with a series of 
refinements to connect them onto the controller one 
after another). Since the FUN-2 requests that 
Controller and Equipment are strongly 
synchronization, the refinement of the controller 
model in this step can be handled by means of 
re-using the strong reaction pattern three times to 
deal with the valve, drain bolt or lid, which are 
similar to the motor we did during the first refinement. 
In the first place, a new context ctx2 is extended from 
the ctx1 to define the type sets and constants used by 
the water valve, drain bolt and lid. Axioms are 
defined also in the ctx2 to constrain properties of the 
sets and constants. Fig.11 is a summary of the ctx2. 
As far as the machine is concern, the refined machine 
wash2 includes 12 variables, 12 invariants and 24 
events totally, half of which are new for the 

connecting equipments and the other of which are 
derived from the abstract machine wash1.   
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 The context ctx2 for the 2nd refinement 

CONTEXT        ctx2 
EXTENDS         ctx1 
SETS                   VLAVE, DRAIN, LID 
CONSTANTS   close,open,bolt,unbolt,up,down 
AXIOMS  

 axm1: VALVE = {close,open} 
axm2: close ≠ open 
axm3: DRAIN = {bolt,unbolt} 
axm4: bolt ≠ unbolt 
axm5: LID = {up,down} 
axm6: up ≠ down 

END 

 
The third refinement of the model is to cope with the 
functional requirement FUN-3, which requests that 
the water inlet valve should synchronize the washing 
motor, and the drain water bolt do the spinning motor. 
These all are weak synchronizations between two 
strong reactions, therefore the pattern for weak 
synchronization will be applied. As a result, the 
relatively abstract machine wash2 is refined into a 
more concrete machine wash3, which 8 new 
invariants for synchronization are appended and 4 
events are modified. With respect to the context, 
there is no new one during the refinement of wash3. It 
still sees the ctx2. 

 
Fig.12 The context ctx2 for the 2nd refinement 

 
The fourth (and last) refinement is about the safety 
requirement SAF-1 and SAF-2, which claim that the 
drain valve must be bolted when Motor is washing or 
the Lid must put down if the motor is spinning. These 
can be considered as strong synchronization 
relationship between two strong reactions.  Applying 
the pattern for strong synchronization of two strong 
reactions to the machine wash3, we have the refined 
machine wash4 as shown in Fig.12, there the last two 
machines have some proving obligations that had 
been discharged automatically. 
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5   Conclusion 
Formal methods approach to software construction 
can significantly increase the reliability and 
correctness of the resulting software, but formal 
methods users often lack some systematic 
methodological measures to help. In object-oriented 
technology, using design patterns can result in 
adapting and incorporating some pre-defined pieces 
of codes in a software project.  Event-B design 
patterns play a similar role in the formal development 
of complex reactive systems, so that the development 
process can be accelerated by re-use some 
pre-defined proved and refined mini-models.  

In this paper some Event-B design patterns are 
presented and applied to specifying the controller 
model of a washing machine. Although it may be 
possible not to use design patterns specifying the 
controller model even the reactive systems, the usage 
of the formal design patterns leads to a rigorous and 
systematic development. This will be quite helpful if 
the target software is critical systems. Other patterns 
for refinement and interaction among patterns are 
possible directions for future work. 
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