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Abstract: - Petri nets (PN) are becoming more common as a tool for analysis and design of industrial 
automation systems (IAS). As an important advantage, PN is able to represent the systems both mathematically 
and graphically. We can utilize mathematical features of PN to carry out modeling, simulation, testing and 
verification phases of IAS. Thus, the entire analysis and design process of large-scale systems is greatly 
simplified and system modeling can be performed accurately and efficiently. However, there is no state 
equation available defined for PN in the literature, when dealing with the inhibitor and enabling arcs. In 
addition, although resetting mechanism is frequently used for IAS, there is no arc type directly representing 
such a mechanism in the literature. 

In this study, the state equation of PN is revisited and novel mathematical descriptions of both inhibitor and 
enabling arcs are introduced. Additionally, a new type of arc, called “nullifier arc”, and its corresponding 
modified state equation are proposed for modeling of the resetting mechanism. The state equation of all three 
arc types are combined and expressed as “generalized state equation”. New software is developed and utilized 
to demonstrate the application of generalized state equation on an IAS. Finally, it is revealed that this novel 
generalized state equation is capable of representing the special arcs, which facilitates analysis of large scale 
systems. 
 
Key-Words: - discrete event systems, modeling, analysis, simulation, petri nets, incidence matrix, state 
equation, inhibitor arc, enabling arc, nullifier arc 
 
1 Introduction 
Ever since Petri nets (PN) were proposed by Carl 
Adam Petri for system modeling in 1962 [1], a 
number of researchers have been working on PN 
[2], [3] for application oriented tasks. This makes 
PN an attractive tool for the challenging problems of 
today [3]. PN is frequently used for discrete event 
control system design [4], [5], [6], and [7]. 

PN is both a graphical and a mathematical tool 
used for system modeling [8]. Being a graphical 
tool, it greatly simplifies the investigation of system 
behavior. At the same time, one can exploit its 
mathematical representation to efficiently perform 
the analysis of systems. This makes it possible to 
investigate the system behavior and to foresee 
possible problems in a more detailed manner. 

Despite the mentioned features which make PN 
powerful for industrial applications, there have been 
a few problems noted over time for the use of PN. 
There was no time representation defined in PN, 
furthermore, modeling complex systems by PN was 
hard. Also the structure of PN made it impossible to 
distinguish any given process in a large-scale 
system. In order to overcome such shortfalls and to 

improve modeling capabilities, some enhancements 
were made to ordinary PN. Hierarchical PN was 
proposed to model complex systems in a modular 
fashion. Colored PN was invented to easily 
distinguish specific events within the system. Timed 
PN was created to model time-based systems. All of 
these are called “high-level PN” [9], [10], and [11]. 

Although there were many enhancements made 
to PN, there were still some mechanisms required 
for the modeling of certain systems. There was a 
need to introduce prioritization into PN. Formally, 
when two or more transitions are connected to only 
one common place and we need a specific transition 
to take precedence over the others, there was no way 
to represent this situation graphically in PN. In 
addition, it was not possible to define negative 
conditions which prevent a particular transition from 
triggering. Inhibitor arcs were proposed to resolve 
such problems. When an inhibitor arc is connected 
to a transition and the input place which is 
connected to this arc has enough token(s), we can 
block the related transition [4], [5], [12], and [13]. 
Inhibitor arcs make it possible to represent the 
negative conditions. Inhibitor arcs are addressed in 
more detail in Section 3. 
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Under certain conditions, it was required to fire a 
transition without removing any tokens from the 
input places. For such a purpose, enabling arcs were 
introduced into PN. An enabling arc is very similar 
to an ordinary arc. The only difference is the fact 
that there is no token removal from the input 
place(s) in case of triggering of transition(s). The 
rest of the firing mechanism is identical to that of an 
ordinary arc [12], [14]. Enabling arcs are mentioned 
in more detail in Section 3. 

In the literature, we observe that there is no 
formal way to implement the resetting functionality 
in PN. We need such a functionality to remove all of 
the tokens from a particular place when the 
corresponding transition triggers. In this study, we 
propose a new type of arc called “nullifier arc” to 
perform this functionality in PN. The nullifier arc is 
explained thoroughly in Section 4. 

We can investigate simple systems graphically in 
PN. But, as the systems get complex, they yield 
huge graphical representations. This is a great 
challenge in analyzing such systems by graphical 
means. Therefore, we opt for mathematical methods 
for the same purpose. In the literature, there is a 
matrix representation which is known as the state 
equation [3], [15]. It is used to model and analyze 
systems mathematically. However, we do not have 
any formalized state equations for the inhibitor, 
enabling and the proposed nullifier arcs. Therefore, 
we cannot analyze the systems mathematically when 
these types of arcs are involved. In this study, the 
state equation for PN is revisited and modified to 
represent the inhibitor, enabling and nullifier arcs 
mathematically. We accomplish this by 
incorporating the behavior of the respective arcs 
into the state equation. The formalized methodology 
is given in Sections 3 and 4. 

The rest of this paper is organized as follows: 
Section 2 gives some preliminaries and notation 
used for the PN. In Section 2, the state transition 
mechanism and the state equation are revisited. In 
Section 3, we mention about the inhibitor and the 
enabling arcs and propose a methodology to modify 
the state equation to represent the behavior of these 
arcs. Section 4 mentions about the newly introduced 
nullifier arc in detail and proposes a new incidence 
matrix to model this type of arc mathematically. 
Finally, conclusions are discussed in Section 5. 
 
 
 
 
 
 
 

2 Preliminaries and Notation 
 
 
2.1 Basic Components 
PN is defined as a bipartite weighted directed graph. 
It is composed of places, transitions, directed arcs 
and tokens. Places represent the conditions and 
transitions represent the events. Places and 
transitions are connected by directed arcs. These 
arcs represent the flow of events within the system. 
Tokens simulate the system dynamics. All of these 
components are illustrated in Fig.1 [15]: 
 

 
Fig.1 Basic components of PN 

Places are used to specify the conditions, 
whereas transitions are utilized to represent the 
triggering of events. Directed arcs connect the 
places and transitions together. It must be noted that 
same types of nodes cannot be connected. Namely, 
two places or two transitions cannot be connected 
together. Only different types of nodes can be 
connected [15], [16]. 

Tokens are contained in places. The current state 
of a place is determined by the number of token(s) 
in this place. If a place has enough token(s), it 
satisfies the required conditions. Otherwise, if a 
place does not have enough tokens, it does not 
satisfy the conditions. Instantaneous distribution of 
tokens in all of the places determines the overall 
state of the system [15]. At any time, a place may 
contain one or more tokens as well as no tokens. 
This depends on the behavior of the underlying 
system. Given below are the definitions for the basic 
components of PN: 

Definition 2.1: The net is defined by the triple 
NET = (P, T, F), where P = {p1, p2, …, pn} is a finite 
non-empty set of places, T = {t1, t2, …, tm} is a finite 
non-empty set of transitions, and P and T are the 
disjunctive sets, i.e., P∩T=∅ (empty set). F is the 
union of two binary relations F1 and F2: F = F1 ∪ F2. 
F1 is a binary relation from P to T: F1 ⊆ P×T. 
Analogously F2 ⊆ T×P is the binary relation from T 
to P. F is the set of ordered pairs consisting of a 
place (transition) at the first position and a transition 
(place) at the second one. F is called a flow relation 
[17]. 

Token

Transition

Place

Arc
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Definition 2.2: A Petri net is defined by the triple 
PN = (NET, W, M0), where NET is a net by 
definition 2.1 such that PN = (P, T, F, W, M0). 

W is the weight function given as W:F→N+ 
where N+ is a set of positive integers. M0:P→N is a 
function called the initial marking whose element 
M0(p) is the number of tokens initially in place p 
where N is a set of non-negative integers. 

The numbers to which the pairs of F are mapped 
are called weights. Obviously, the weights are 
positive integers. The initial marking is non-
negative integers [17]. 

Definition 2.3: The function M:P→N is called 
the marking of a Petri net. M(pi) represents the 
number of tokens in place pi at marking M. 

The initial marking is specifically given in the 
definition of a Petri net. Similarly as in finite 
automata, it is reasonable to include the initial state 
in Petri net model definition because any real 
system begins its activity at an initial state. The 
different functions M:P→N correspond to the 
different markings [17]. 

Definition 2.4: The set of input places of 
transition tj is denoted by I(tj) and called the pre-set 
of tj. Similarly the set of output places belonging to 
transition tj is denoted by O(tj) and called the post-
set of tj. These definitions are given as follows [15], 
[17]: 
 ( ) ( ){ }FtpPptI jiij ∈∈= ,:  (1)  

 ( ) ( ){ }FptPptO ijij ∈∈= ,:  (2) 
Definition 2.5: The notation W(pi, tj) = k states 

that there are k arcs connecting place pi and 
transition tj, which means there is a unique k-
weighted arc connecting these nodes. In the same 
way, W(tj, pi) = k notation states that there are k arcs 
connecting transition tj and place pi [15]. 
 
 
2.2 State Transition Mechanism 
The state transition mechanism in PN is realized by 
moving tokens between places. That is how state 
changes occur in PN [8]. Transitions are utilized to 
move tokens around. When the necessary conditions 
for a transition are satisfied, this transition can 
trigger. And when a transition triggers, tokens are 
removed from input places and added to output 
places. By this way, PN changes its current state and 
settles in another state. Actually, it is the triggering 
of transitions that causes the state changes in a PN. 
For a transition to trigger and to change the system 
state, the required conditions for that transition 
should be met [15]. The following definitions are 
given regarding the state transition mechanism in 
PN: 

Definition 2.6: The following condition must 
hold to enable any transition tj ∈ T in PN [15]: 
 ( ) )(,,)( jijii tIptpWpM ∈∀≥  (3) 

In other words, a transition tj is called “enabled” 
if and only if, for each pre-place of tj, the marking of 
this place is equal to or greater than the weight of 
the arc connecting it to tj, or tj has no pre-place [17]. 

Definition 2.7: After a particular transition tj 
triggers, the next state M'(pi) of the PN is defined as 
follows [15], where n is the total number of places: 
 ( ) ( ) ( ) ( ) niptWtpWpMpM ijjiii ,,1,,, K=+−=′  (4) 

According to (4), if pi is an input place of 
transition tj, after tj triggers, tokens are removed 
from this place. And the number of tokens removed 
from place pi equals to the weight of the arc 
connecting this place to transition tj. On the other 
side, if pi is an output place of transition tj, after tj 
triggers, tokens are added to this place. And the 
number of tokens added to place pi equals to the 
weight of the arc connecting transition tj to this 
place [4], [5], and [15]. Consequently, after a 
transition triggers, input places lose tokens, whereas 
output places gain tokens. 
 
 
2.3 The State Equation 
It is vital to revisit the state equation of PN for 
understanding the methodology that will be 
proposed later. PN is known to represent the 
dynamic behavior of a system graphically. 
Therefore, the graphical features of PN can be 
exploited to inspect the dynamics of a system. This 
approach is suitable for simple systems. However, 
graphical methods are not efficient when large and 
complex systems are involved. In this case, we need 
a mathematical method for the inspection of such 
systems. The state equation is used to resolve this 
problem for PN [15]. When a transition triggers and 
there is a state change in the system, we can obtain 
the final state by evaluating the state equation of the 
system. This is a comfortable way to analyze the 
system behavior. 

Before the definition of the state equation, we 
give some auxiliary definitions as in the following: 

Definition 2.8: An m-dimensional firing vector u 
is defined as follows [15], where m is the total 
number of transitions: 
 [ ]0,,0,1,0,,0 KK=u  (5) 

In this vector, all of the elements assume a value 
of zero except the jth element. A value of one for the 
jth element implies that only the jth transition will 
trigger. 
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Definition 2.9: The incidence matrix D is an m×n 
matrix whose entries are given as follows [15], 
where n is the total number of places and m is the 
total number of transitions: 
 ( ) ( )jiijji tpWptWd ,, −=  (6) 

The incidence matrix identifies the behavior of 
the system. Therefore, the incidence matrix can be 
assumed to represent the system itself. 

Definition 2.10: By using (5) and (6), we can 
give the state equation for the PN as follows, where 
M' is the final state vector, M is the initial state 
vector, u is the firing vector and D is the incidence 
matrix [15]: 
 M M uD′ = +  (7) 

Equation (7) is known as the state equation of the 
PN. The state equation mathematically represents 
the dynamic behavior of a system. When a 
particular transition triggers, we can obtain the next 
state using the state equation. 
 
 
3 Formalizing the State Equation for 
Inhibitor and Enabling Arcs 
 
 
3.1 Inhibitor Arc 
We already know that a transition triggers when all 
of the required conditions are satisfied. However, 
there may also be other conditions that prevent the 
triggering of a transition. Inhibitor arcs are used to 
simulate such negative conditions. Inhibitor arc is an 
extension to ordinary PN. It is used to prevent a 
particular transition from triggering [12], [16]. This 
can also be used to prioritize particular transitions. 
For more information on inhibitor arcs, refer to [8], 
[12]. In this section, a methodology is formalized to 
represent the behavior of the inhibitor arcs in a 
matrix form. 

During our research, we have noticed that there 
is no formalized state equation for inhibitor arcs in 
the literature. In order to study inhibitor arcs in a 
computerized environment, we need to represent 
them mathematically. This can be accomplished by 
incorporating the behavior of inhibitor arcs into the 
state equation. 

 
Fig.2 An illustration of inhibitor arc 

In Fig.2, we have an inhibitor arc between place 
p2 and transition t1. If we disregard this inhibitor arc, 
transition t1 can trigger since place p1 contains a 
token. However, since place p2 has at least one 
token; transition t1 is prevented from triggering. 
Now, let us construct the state equation for this 
particular PN. When writing down the equations, we 
treat the inhibitor arc just like an ordinary arc: 
 M M uD′ = +   
 [ ] [ ] [ ]1 1 0 1 1 1 1M ′ = + − −   

 [ ]100=′M  (8) 
Eventually, since the inhibitor arc blocks the 

transition, there would be no token transfer and the 
final state would remain unchanged. However, 
according to (8), tj triggers and p1, p2 lose tokens 
whereas p3 gains a token. Obviously, this is not the 
expected result, because it does not take into 
account the effect of inhibitor arc. Therefore, the 
state equation cannot directly be used to model the 
behavior of the inhibitor arc. So, we need to modify 
it accordingly. In order to incorporate the effect of 
inhibitor arcs into the state equation, we propose a 
new m×m matrix called “inhibitor matrix” which 
will be denoted by ( )MH~ . In this notation, M is the 
current marking of the PN. The definition of 
inhibitor matrix ( )MH~  is given as follows: 

Definition 3.1: The inhibitor matrix is an m×m 
diagonal matrix whose off-diagonal elements are 
either 0 or 1. It is given as in the following: 

 
 
 

 (9) 
In (9), m denotes the total number of transitions. 

The inhibitor matrix is variable and depends on the 
current system state. It identifies whether or not any 
given transition is blocked. 

The inhibitor matrix itself is not enough to model 
the behavior of the inhibitor arc. When a transition 
triggers, no tokens are removed from the place 
which is connected to this transition by an inhibitor 
arc. In order to realize such behavior, we need to 
make a slight modification on the incidence matrix 

p3 

 t1 

p1 p2 

( ) =MH~

( ) 0, 1 , , , 1 , , ,ijH M i m j m= = =% K K

( ) 1, 1 , , ,jjH M j m= =% K
if tj is not blocked  
by an inhibitor arc, 

if i ≠ j, 

( ) 0, 1 , , ,jjH M j m= =% K otherwise. 
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as well. The new incidence matrix D' is defined as 
follows: 

Definition 3.2: The incidence matrix for inhibitor 
arcs is given as in the following: 

 
 

 (10) 
In (10), n denotes the total number of places and 

m denotes the total number of transitions. The 
proposed incidence matrix revises the token transfer 
mechanism and makes it suitable for the inhibitor 
arcs. When ordinary arcs are involved, the new 
incidence matrix behaves just like the standard 
incidence matrix. 

So far we have defined the inhibitor matrix and 
the modified incidence matrix. Now it is time to 
integrate them into the state equation. The new state 
equation can be defined as in the following: 

Definition 3.3: Using (9) and (10), we define the 
state equation for inhibitor arcs as follows: 
 ( )M M u H M D′ ′= + %  (11) 

Equation (11) can be used to model the inhibitor 
arcs. Let us readdress the previous PN example 
given in Fig.2. First of all, we need to figure out the 
inhibitor matrix ( )MH~ . Since place p2 has at least 
one token, transition t1 is blocked. Using (9), we 
obtain the inhibitor matrix ( )MH~  as in the 
following: 
 ( ) [ ]0~ =MH  (12) 

The new incidence matrix D' can be figured out 
according to (10). There is an inhibitor arc between 
place p2 and transition t1. Thus, evaluating the 
element d'12 yields a value of zero. Since there are 
not any other inhibitor arcs in the PN, the other 
elements of the new incidence matrix are identical 
to those of the standard incidence matrix. In this 
case, the new incidence matrix is given as follows: 
 [ ]101−=′D  (13) 

Finally, substituting the inhibitor matrix (12) and 
the new incidence matrix (13) into the new state 
equation (11), we obtain the following: 
 [ ] [ ]0 1 0 1M M u′ = + −  (14) 

Note that the value of the inhibitor matrix is zero 
in (14). Therefore, when we evaluate this new state 
equation, the final state equals to the initial state of 
the system. That means there is no change in the 
system state. This is the expected result. Because of 
the inhibitor arc blocking transition t1, this transition 
cannot trigger and system state does not change. 

Now let us consider another scenario for the 
same example. In this scenario, we suppose that 
place p2 has no tokens. So, the inhibitor arc does not 

block transition t1 and this transition can trigger. In 
this case, inhibitor matrix is obtained as follows: 
 ( ) [ ]1~ =MH  (15) 

We have already obtained the new incidence 
matrix, so there is no need to recalculate it. After we 
substitute the inhibitor matrix (15) and the new 
incidence matrix (13) into the new state equation 
and evaluate it, we obtain the following: 
 [ ] [ ] [ ] [ ]1 0 0 1 1 1 0 1M ′ = + −   

 [ ] [ ] [ ]1 0 0 1 1 0 1M ′ = + −   

 [ ]100=′M  (16) 
This is the expected result. Since place p2 does 

not have any tokens, transition t1 is not blocked and 
it triggers. When transition t1 triggers, one token is 
removed from place p1 and one token is added to 
place p3. The final state obtained in (16) reveals this 
situation. 

In this section, we have proposed a modified 
state equation that can represent the behavior of 
inhibitor arcs. Using this new state equation, the 
inhibitor arcs can be modeled mathematically. This 
enables us to analyze and verify PN in computer 
systems when inhibitor arcs are involved. 
 
 
3.2 Enabling Arc 
Another extension to ordinary PN is the enabling 
arc. An enabling arc is simply used to enable a 
particular transition. Its behavior is very similar to 
that of an ordinary arc. The only difference is in the 
token transfer mechanism. Let us assume an 
enabling arc between place pi and transition tj. In 
this case, transition tj can trigger if there is at least 
one token in place pi. However, when this transition 
triggers, no token is removed from the input place 
pi. So, the triggering of a transition does not change 
the marking in the places which are connected to 
enabling arcs. An enabling arc is illustrated by an 
arc with an empty arrow ending [12], [14]. For more 
information about enabling arcs, refer to [8], [12]. 

In the literature, we observed that there is no 
corresponding state equation for the enabling arcs. 
To leverage mathematical methods when studying 
enabling arcs, it is also required to represent them 
mathematically. For such a purpose, we use the fact 
that an enabling arc can be graphically represented 
using ordinary arcs. This situation is illustrated in 
Fig.3 as in the following: 

, 1 , , , 1 , , ,ji jid d i n j m′ = = =K K
=′D

0 , 1 , , , 1 , , ,jid i n j m′ = = =K K if there is an inhibitor arc  
between pi and tj, 
otherwise. 
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Fig.3 The enabling arc (a), and its counterpart (b) 

Fig.3a illustrates a PN which includes an 
enabling arc and Fig.3b gives a representation of 
this enabling arc using ordinary arcs. We observe 
that the enabling arc can be represented utilizing 
two ordinary arcs. One of these arcs is drawn from 
place p2 to transition t1. And the other one is drawn 
from transition t1 back to place p2. By studying 
following conditions, it can be verified whether or 
not this representation exactly corresponds to an 
enabling arc: 

Condition 1: For transition t1 to trigger, there 
should be at least one token in both places p1 and p2. 

Condition 2: When the required conditions are 
satisfied and transition t1 triggers, the marking of 
place p2 should not change. 

In Fig.3b, it is obvious that transition t1 can 
trigger if and only if the places p1 and p2 contain at 
least one token. In this case, “Condition 1” is 
already satisfied. When transition t1 triggers, the 
token in place p2 is removed due to the arc directed 
to transition t1. At the same time, another token is 
added to place p2 due to the arc directed back to 
place p2. Thus, the number of tokens in place p2 is 
conserved and does not change. This means the 
marking of place p2 does not change. Therefore, 
“Condition 2” is also satisfied. Since we have all of 
the necessary conditions satisfied, we conclude that 
an enabling arc can be represented using two 
ordinary arcs, as illustrated in Fig.3b. 

Since an enabling arc can be represented using 
ordinary arcs, incorporating its behavior into the 
state equation is straightforward. We know that the 
triggering of a transition does not change the 
marking of the place that is connected to the 
enabling arc. This feature only requires a slight 
modification of the standard incidence matrix. Like 
inhibitor arcs, when constructing the new incidence 
matrix, dji is taken to be zero for any enabling arc 
that is drawn from place pi to transition tj. 
Otherwise, the other elements of this incidence 
matrix remain the same as those of the standard 

incidence matrix. So, we observe that the new 
incidence matrix D' given in (10) can also be used 
for representing the enabling arcs. Other than that, 
no further modification is required. We give the 
modified state equation in the following definition: 

Definition 3.4: The state equation for enabling 
arcs is given as in the following: 
 M M u D′ ′= +  (17) 

We can use the new state equation (17) for the 
PN given in Fig.3a. The new incidence matrix is 
obtained same as (13). When we substitute this 
matrix into this state equation and evaluate it, we 
obtain the following: 
 [ ] [ ] [ ]1 1 0 1 1 0 1M ′ = + −  

 [ ]110=′M  (18) 
When transition t1 triggers, one token is removed 

from place p1 and one token is added to place p3. 
However, since we have an enabling arc between 
place p2 and transition t1, no token is removed from 
place p2. The corresponding final state is 
demonstrated in (18). This is the expected result. 

In this section, we have modified the state 
equation to represent the behavior of enabling arcs. 
We conclude that the proposed state equation can be 
used to model the enabling arcs mathematically. 
This helps us to analyze and verify PN in computer 
systems when enabling arcs are involved. 
 
 
4 Introducing the Nullifier Arc 
 
 
4.1 Nullifier Arc 
We discussed both the inhibitor and the enabling 
arcs so far. These arcs are introduced into PN for 
modeling complex systems. In the previous section, 
we demonstrated a methodology to represent the 
behavior of the inhibitor and the enabling arcs 
mathematically. For this purpose, the state equation 
is modified for each of these arcs accordingly. In 
this section, we propose a new type of arc and 
follow the same methodology to represent it 
mathematically. 

For certain applications, when a transition 
triggers, we require a mechanism to remove all of 
the tokens from the corresponding input place with 
no dependence on the number of tokens. This is 
necessary to implement the resetting functionality. 
For such a purpose, we should previously know the 
number of tokens in this place and adjust the weight 
value of the related arc accordingly. However, since 
the weight value is static, we cannot modify it 
dynamically. Therefore, in ordinary PN, it is not 

p1 

p3 

p2 

t1 

p1 

p3 

p2 

t1 

(b) (a) 
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possible to implement such functionality. We 
introduce “nullifier arc” to overcome this problem. 
The nullifier arc modifies the state transition 
mechanism defined in (3) and (4) as in the 
following: 

Definition 4.1: The following condition must 
hold to enable any transition tj ∈ T in PN [15]: 
 )(,0)( jii tIppM ∈∀≥  (19) 

When nullifier arcs are involved, a transition tj is 
called “enabled” if and only if, for each pre-place of 
tj, the marking of this place is greater than or equal 
to zero. Note that there is no dependency on the 
weight values. 

Definition 4.2: After a particular transition tj 
triggers, the next state M'(pi) of the PN is defined as 
follows [15]: 
 ( ) nipM i ,,1,0 K==′  (20) 

According to (20), if pi is an input place of 
transition tj, after tj triggers, all of the tokens are 
removed from this place. Thus, the nullifier arc 
gives us the opportunity to remove all of the tokens 
from an input place with no dependence on the 
number of tokens. In order to give a mathematical 
description of the nullifier arc, the standard 
incidence matrix is redefined as given below: 

Definition 4.3: The incidence matrix for nullifier 
arcs is given as follows: 
 

 
 (21) 

In (21), n denotes the total number of places and 
m denotes the total number of transitions. The 
proposed incidence matrix depends on the current 
system state. When nullifier arcs are involved, the 
corresponding elements of this matrix indicate that 
all of the tokens will be removed from the related 
input places. Otherwise, this incidence matrix 
behaves just like the one defined in (10). 

Definition 4.4: Using (21), we define the state 
equation for nullifier arcs as follows: 
 ( )M M uD M′ ′′= +  (22) 

We can use (22) to represent the behavior of 
nullifier arcs mathematically. Nullifier arc is 
depicted in Fig.4: 

Fig.4 The nullifier arc (a), and its counterpart (b) 
In Fig.4a, the arc with a solid disc at the center 

denotes the nullifier arc. The nullifier arc provides 
an intuitive way to implement the resetting 
mechanism for PN. It performs an immediate 
resetting functionality. Therefore, when transition t1 
triggers, all of the tokens are removed from place p1 
at once. We can realize the similar functionality 
using the illustration given in Fig.4b. However, in 
this illustration, the resetting functionality takes as 
many steps as the number of tokens in place p1, 
whereas nullifier arc performs this functionality at a 
single step. For clarity, we will call this illustration 
as the counterpart of the nullifier arc. In the next 
section, we demonstrate that both the nullifier arc 
and its counterpart behave the same. For this 
purpose, we show the equivalence of their state 
equations. 
 
 
5 Construction of the Generalized 
State Equation for PN 
So far, we defined the inhibitor matrix only for 
inhibitor arcs and the modified incidence matrix for 
inhibitor, enabling and nullifier arcs individually. 
However, a unique state equation is required when 
dealing with all of these arcs at the same time. 
Therefore, we combine the inhibitor matrix and the 
modified incidence matrix to obtain the generalized 
state equation. 

Definition 5.1: Using (9), (10) and (21) we 
define the generalized state equation for PN as 
follows: 
 ( ) ( )MDMHuMM ′′+=′ ~

 (23) 
Equation (23) is called the generalized state 

equation and it can mathematically represent the 
behavior of all of the arcs. 

p1 

t1 

p1 

t1 

t1' 

p2 

t1'' 

(a) (b) 

if there is a nullifier arc  
between pi and tj, 

, 1, , , 1, , ,ji jid d i n j m′′ ′= = =K K otherwise. 

( ) , 1, , , 1, , ,ji id M p i n j m′′ = − = =K K
( ) =′′ MD
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Now, we use the generalized state equation to 
demonstrate that both the nullifier arc (Fig.4a) and 
its counterpart (Fig.4b) can perform the resetting 
mechanism. We inspect whether or not their state 
equations match with each other. At first, let us 
write down the generalized state equation for the 
counterpart of the nullifier arc in Fig.4b: 
 ( ) ( )MDMHuMM ′′+=′ ~  

 [ ] ( )1 2

1 1
( ) ( ) 1 0

0 1
M M p M p u H M

−⎡ ⎤
⎢ ⎥′ = + −⎢ ⎥
⎢ ⎥−⎣ ⎦

% (24) 

Note that place p2 has no tokens initially. If we 
suppose that place p1 has at least one token, 
equation (24) becomes: 

 [ ]1

1 0 0 1 1
( ) 0 0 1 0 1 0

0 0 0 0 1
M M p u

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ = + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (25) 

According to (25), only transition t1' can trigger. 
Substituting the appropriate firing vector u into (25), 
we obtain the next state as in the following: 

 [ ] [ ]1

1 0 0 1 1
( ) 0 1 0 0 0 1 0 1 0

0 0 0 0 1
M M p

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ = + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 ( )[ ]11)( 1 −=′ pMM  (26) 
When the transition t1' triggers, one token is 

removed from place p1 and one token is added to 
place p2. The next state obtained in (26) reveals this 
situation. In this case, transition t1' is blocked 
because of the inhibitor arc between place p2 and 
this transition. Under this condition, we can discuss 
two distinct cases: 

Case 1: If place p1 has only one token initially, 
after transition t1' triggers, this place will not have 
any tokens. Therefore, transition t1'' cannot trigger. 
However, since place p1 has no tokens and place p2 
has one token, transition t1 can trigger. The 
evaluation of the state equation yields the following 
next state: 

 [ ] [ ]
0 0 0 1 1

0 1 0 0 1 0 1 0 1 0
0 0 1 0 1

M
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥′′ = + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 [ ]00=′′M  (27) 
When transition t1 triggers, the token in place p2 

is removed. As shown in (27), there are no tokens 
left in both places p1 and p2. Thus, the resetting 
mechanism is realized. 

Case 2: If the initial number of tokens in place p1 
is more than one, after transition t1' triggers, this 
place will have at least one token. In this case, 
transition t1 is blocked because of the inhibitor arc 

between place p1 and this transition. However, since 
both places p1 and p2 have at least one token, 
transition t1'' can trigger. After transition t1'' triggers, 
the next state is obtained as in the following: 

 ( ) [ ]1

0 0 0 1 1
( ) 1 1 0 1 0 0 1 0 1 0

0 0 0 0 1
M M p

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′′ = − + −⎡ ⎤⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 ( )[ ]12)( 1 −=′′ pMM  (28) 
 (28) implies that one token is removed from 

place p1 when transition t1'' triggers. As long as 
place p1 has at least one token, transition t1'' triggers 
and one token is removed from place p1. After all of 
the tokens are removed from place p1, “Case 1” 
becomes valid. Thus, the token in place p2 is 
removed as well. This leaves no more tokens in both 
places p1 and p2. Finally, the resetting mechanism is 
realized. 

This exhibits that the counterpart of the nullifier 
arc can realize the resetting mechanism. It is also 
verified that the generalized state equation works 
perfectly for both inhibitor and enabling arcs. 

We follow the same methodology for the 
nullifier arc. Again, we use the generalized state 
equation to obtain the next state for the nullifier arc 
in Fig.4a: 
 ( ) ( )MDMHuMM ′′+=′ ~

 
 ( )[ ] [ ][ ] ( )[ ] [ ]011 11 =−+=′ pMpMM  (29) 

As can be seen in (29), all of the tokens in place 
p1 are removed when transition t1 triggers. This 
verifies the functionality of the nullifier arc. We 
conclude that the generalized state equation can be 
used to mathematically model inhibitor, enabling 
and nullifier arcs. 
 
 
6 Illustrative Example 
 
 
6.1 The Mixer System 
In this example, a mixer system is introduced. The 
corresponding PN model of this system includes 
inhibitor, enabling and nullifier arcs. We use the 
generalized state equation to figure out the states of 
this system. In addition, we developed software to 
implement our methodology. We use this software 
to obtain the system states as well. In order to verify 
our proposed methodology, we calculate the states 
of the system both using our methodology and 
graphically and compare the results. 

The mixer system has two inputs and two outputs 
(Fig.6). One of the inputs starts and the other input 
stops the system. In order to perform the mixing 
mechanism, we control a motor which can be 
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instructed to spin in either forward or reverse 
direction according to the system output. The 
system also has four timers to control the amount of 
time during which the motor spins in a specific 
direction and the motor stops between spins. When 
the motor completes spinning in both directions 
consecutively, the system is said to operate once. A 
counter is used to record the number of times the 
system operates. The system stops after it operates a 
predefined number of times. A nullifier arc is used 
to reset the counter. The corresponding PN is given 
in Fig.5: 

 
Fig.5 PN of the mixer system 

Note that there is a nullifier arc between p9 and 
t11 and W(p9, t5) = W(p9, t10) = N. The description of 
the places is given in the following table: 

Table 1 Place descriptions 
Place Description 
p1 Initial state 
p2 Motor spins in forward direction 
p3 Motor stops 
p4 Motor spins in reverse direction 
p5 Motor stops 
p6 System is online 
p7 System will be stopped 
p8 System is about to stop 
p9 The number of times system operates 
 

 
Fig.6 System setup 

PN of the system given in Fig.5 includes all 
types of arcs mentioned in this paper. In this PN, the 
use of nullifier arc is also given. We can use the 
generalized state equation to obtain the states of this 
system and to verify our methodology. Let us 
consider the following cases: 

Case 1: [ ]201100100=M  
Since place p7 contains a token, transition t3 is 

blocked. Place p3 has a token. Thus, transition t8 can 
trigger. When this transition triggers, place p3 and 
place p7 lose token and place p8 gains one token. 
Other places are not affected. In this case, the next 
state of the system is obtained as follows: 
 [ ]210100000=′M  (30) 

We use the generalized state equation to obtain 
the next state mathematically. First, we figure out 
the inhibitor matrix according to (9). Since only 
transitions t6, t7, t8, t9 and t11 are not blocked, the 
corresponding diagonal elements have a value of 
one, whereas all other elements become zero: 

 

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10000000000
00000000000
00100000000
00010000000
00001000000
00000100000
00000000000
00000000000
00000000000
00000000000
00000000000

~ MH

 (31) 

We calculate the modified incidence matrix 
according to (10) and (21): 
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( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−
−−
−−
−−

−
−

−
−

−

=′′

210100001
00110001

011001000
011000100
011010000
011000010
000010010
100011000
000001100
000000110
000000011

N

MD

 (32) 

We substitute (31) and (32) into the generalized 
state equation (23): 
 [ ] ( ) ( )MDMHMM ′′+=′ ~00010000100   
 [ ]210100000=′M  (33) 

The results obtained graphically (30) and 
mathematically (33) are identical. We verify the 
result using our software. The software also 
computes the modified incidence matrix and the 
inhibitor matrix (N=3): 

 
Fig.7 The next state as computed by the software 

(case 1) 
Case 2: [ ]210100000=M  
Since place p6 and place p8 contain one token and 

place p9 contains two tokens, transition t11 can 
trigger. When this transition triggers, place p6 and 
place p8 lose one token, and all tokens in place p9 
are spent by the nullifier arc. Place p1 gains one 
token. Other places are not affected. In this case, the 
next state of the system is obtained as follows: 
 [ ]000000001=′M  (34) 

We use the generalized state equation to obtain 
the next state mathematically. First, we figure out 
the inhibitor matrix according to (9). Since no 
transitions are blocked, all diagonal elements have a 
value of one. All other elements are already zero. 
The inhibitor matrix becomes 11×11 identity matrix: 

 

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10000000000
01000000000
00100000000
00010000000
00001000000
00000100000
00000010000
00000001000
00000000100
00000000010
00000000001

~ MH

 (35) 

We calculate the modified incidence matrix 
according to (10) and (21): 

 

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−
−−
−−
−−

−
−

−
−

−

=′′

210100001
00110001

011001000
011000100
011010000
011000010
000010010
100011000
000001100
000000110
000000011

N

MD

 (36) 

We substitute (35) and (36) into the generalized 
state equation (23): 
 [ ] ( ) ( )MDMHMM ′′+=′ ~10000000000  
 [ ]000000001=′M  (37) 

The results obtained graphically (34) and 
mathematically (37) are identical. We verify the 
result using our software. The software also 
computes the modified incidence matrix and the 
inhibitor matrix (N = 3): 

 
Fig.8 The next state as computed by the software 

(case 2) 
 
 

WSEAS TRANSACTIONS on SYSTEMS Cem Baskocagil, Salman Kurtulan

ISSN: 1109-2777 304 Issue 9, Volume 10, September 2011



7 Conclusion 
In this paper, a new type of arc called “nullifier arc” 
is proposed to implement the resetting mechanism 
and a novel methodology is formalized to represent 
inhibitor, enabling and nullifier arcs mathematically. 
For this purpose, we modified the incidence matrix 
for all of these arcs and constructed a new matrix 
called the “inhibitor matrix” only for the inhibitor 
arcs. Combining the inhibitor matrix and the 
modified incidence matrix, we obtained a 
generalized state equation. Following this, we 
demonstrated the usage of this generalized state 
equation to investigate the states of a case study: 
industrial automation system. In this system, we 
used nullifier arc to reset a counter. We also 
developed software which implements our 
methodology. This software is utilized to obtain the 
states of the system. Finally, we verified that the 
generalized state equation can be used for 
mathematical modeling of all types of the arcs. 
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