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Abstract: Consider the following convection diffusion equation

ut = div(| ∇um |p−2 ∇um) +
N∑
i=1

∂bi(u
m, x, t)

∂xi
.

Supposed that 0 < m < 1, p > 1 + 1
m , using Moser iteration technique, we get the local bounded properties of

the solution of the regularized problem. By the compactness theorem, the existence of the weak solution of the
convection diffusion equation itself is obtained.
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1 Introduction
The objective of the paper is to study the nonnegative
weak solution of the doubly nonlinear diffusion equa-
tions with a convection term as follows

ut = div(| ∇um |p−2 ∇um) +
N∑
i=1

∂bi(u
m, x, t)

∂xi
,

(1)
where ∇ is the spatial gradient operator, (x, t) ∈ S =
Ω× (0,∞), Ω ⊂ RN is a bounded open domain. The
initial boundary value conditions are as usual.

u(x, 0) = u0(x), x ∈ Ω, (2)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞), (3)

where, p > 1, m > 0, N ≥ 1, and we assume that

0 ≤ u0(x) ∈ Lq−1+ 1
m (Ω), (4)

where 3 > q > 1. According to the different expo-
nents of m, p, we have the following classical termi-
nologies about the equation (1).

(i) The case p = 2,m = 1, is the ordinary semi-
linear diffusion equation.

(ii) The case p = 2,m ̸= 1, is the porous media
equation, it is degenerate at u = 0 for m > 1 and
singular at u = 0 for 0 < m < 1.

(iii) The case p ̸= 2,m = 1, is the p-diffusion
equation, it is degenerate at ∇u = 0 for 2 < p < ∞
and singular at ∇u = 0 for 1 < p < 2.

(iv) The case p ̸= 2,m ̸= 1, is the doubly non-
linear diffusion equation, singularity and degeneracy
at u = 0 and ∇u = 0, respectively, occur in arbitrary
combinations.

(v) If m(p − 1) > 1(= 1, < 1), then equation
(1) is called the slow (normal, fast) diffusion equation
respectively.

Equation (1) appears in a number of different
physical situations [1].

For example, in the study of water infiltration
through porous media, Darcy’s linear relation

V = −K(θ)∇ϕ,

satisfactorily describes flow conditions provided the
velocities are small. Here V represents the seepage
velocity of water, θ is the volumetric moisture con-
tent, K(θ) is the hydraulic conductivity and ϕ is the
total potential, which can be expressed as the sum of
a hydrostatic potential ψ(θ) and a gravitational poten-
tial z

ϕ = ψ(θ) + z. (5)

However, (5) fails to describe the flow for large
velocities. To get a more accurate description of the
flow in this case, several nonlinear versions of (5) have
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been proposed. One of these versions is

V α = −K(θ)∇ϕ, (6)

where α is a positive constant, cf. [2-4] and their ref-
erences. If it is assumed that infiltration takes place in
a horizontal column of the medium, by the continuity
equation

∂θ

∂t
+
∂V

∂x
= 0,

(5) and (6) give the equation

∂θ

∂t
=

∂

∂x
(D(θ)p|θx|p−1θx)

with 1
p = α and D(θ) = K(θ)ψ′(θ). Choosing

D(θ) = D0θ
m−1 (cf. [5-6]), one obtains (1) with

bi(s, x, t) ≡ 0, u being the volumetric moisture con-
tent.

Another example where equation (1) appears is
the one-dimensional turbulent flow of gas in a porous
medium (cf. [7]), where u stands for the density, and
the pressure is proportional to um−1; see also [8].
Typical values of p are 1 for laminar (non-turbulent)
flow and 1

2 for completely turbulent flow.
The existence of nonnegative solution of (1) with-

out the convection term
∑N

i=1
∂bi(u

m,x,t)
∂xi

, defined in
some weak sense, is well established (see [9], [10]
etc.). In 2012, Matas-Merker [11] have supplemented
an elementary proof of the existence of weak solutions
of (1) by Faedo-Galerkin method, in which some re-
strictions on the convection term are given, and the
initial value u0(x) ∈ Lm

′
(Ω), m > 1, m′ = m

m−1
is the conjugate number of m. Recently, the second
author of the paper also have studied the existence of
nonnegative solution of (1) with the convection term
as
∑N

i=1
∂bi(u

m)
∂xi

in [12]. Other related results had
been deeply studied in the tremendous amount of ref-
erences, for examples, one can refer to [13-19] etc.
By the way, the second author has studied the rele-
vant problem for a long time, see [10],[12] and [20-
22] please.

2 Some Lemmas and main result
In what follows, we assume that the convection term∑N

i=1
∂bi(u

m,x,t)
∂xi

satisfies
(A): For any given i ∈ {1, 2, · · · , N}, bi(s, x, t)

is a C1 function, and there exist constants c such that

|bi(s, x, t)| ≤ c|s|
1
m , (7)

|b′i(s, x, t)| = |
∂bi(s, x, t)

∂s
| ≤ c|s|

1
m
−1, (8)

and

|bixi(s, x, t)| = |
∂bi(s, x, t)

∂xi
| ≤ c|s|

1
m . (9)

As usual, the constants c here and in what fol-
lows may be different from one to another. If one
compares the condition (A) with the corresponding
condition which is posed on the convection term as∑N

i=1
∂bi(u

m)
∂xi

in [12], he will find that the exponent
1
m in (7)( or 1

m − 1 in (8)) is replaced by a general
constant α, which means that bi(s) in [12] has more
general choices compared to bi(s, x, t) in this paper.
In other words, there are essential differences between∑N

i=1
∂bi(u

m)
∂xi

and
∑N

i=1
∂bi(u

m,x,t)
∂xi

. By the way, the
condition (9) is naturally neglected in [12], the imply-
ing condition m < 1 in (8) is also not needed in [12].

Now we quote the following definition.

Definition 1 A nonnegative function u(x, t) is called
a weak solution of (1)-(3) if u satisfies

(i)
u ∈ L∞

loc(0,∞;L∞(Ω)), (10)

ut ∈ L2
loc(0,∞;L2(Ω)), (11)

um ∈ L∞
loc(0,∞;W 1,p

0 (Ω)), (12)

(ii) ∫ ∫
S
[uφt− | ∇um |p−2 ∇um · ∇φ

−
N∑
i=1

bi(u
m, x, t) · φxi ]dxdt = 0, ∀φ ∈ C1

0 (S);

(13)
(iii)

lim
t→0

∫
Ω
| u(x, t)− u0(x) | dx = 0. (14)

We need some important lemmas in order to get
our results.

Lemma 2 [23] (Gagliardo-Nirenberg) If 1 ≤ l < N ,
1+β ≤ q, 1 ≤ r ≤ q ≤ (1+β)Nl/(N − l), suppose
that u1+β ∈W 1,l(Ω), then

∥u∥q ≤ c1/(1+β)∥u∥1−θr ∥u1+β∥θ/(1+β)1,l ,

where θ = (β + 1)(r−1 − q−1)/(N−1 − l−1 + (β +
1)r−1).
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Lemma 3 [24] Let y(t) be a nonnegative function on
(0, T ]. If it satisfies

y′(t)+Atλθ−1y1+θ(t) ≤ Bt−ky(t)+Ct−δ, 0 < t ≤ T,

where A, θ > 0, λθ ≥ 1, B,C ≥ 0, k ≤ 1, then

y(t) ≤ A− 1
θ (2λ+ 2BT 1−k)

1
θ t−λ

+2C(λ+BT 1−k)−1t1−δ, 0 < t ≤ T.

Lemma 4 Let y(τ) be a nonnegative function on
[1,∞]. If it satisfies

y′(τ) +Aτµy1+θ(τ) ≤ Bτ−k, τ ≥ 1,

where A,B, µ, k ≥ 0, then there are constant C > 0
and γ = min{(1 + µ)/θ, (µ+ k)/(1 + θ)} such that

y(τ) ≤ Cτ−γ , τ ≥ 1.

Lemma 5 Suppose L1 ≥ 1, r,R,M > 0, λ1 > 0.
For n = 2, 3, · · ·, let

Ln = RLn−1 −M,

θn = NR(1− Ln−1L
−1
n )(N(R− 1) + r)−1,

βn = (Ln +M))θ−1
n − Ln,

λn = (1 + λn−1(βn −M))β−1
n .

Then

lim
n→∞

λn =
L1λ1r +N

l1 +MN
.

The proof of lemma 4-lemma 5 is easy, one can
refer to [25].

In what follows, we assume that

p > 1 +
1

m
, 0 < m < 1,

which means that equation (1) is a doubly degenerate
parabolic equation. We will consider the regularized
problem, use Moser iteration technique, prove the lo-
cal bounded properties of its solution and obtain the
local bounded properties of the Lp-norm of the gradi-
ent. By the compactness theorem, we can prove the
existence of the solution of the convection diffusion
equation itself. At last, the following theorem is ob-
tained.

Theorem 6 If (A) and p > 1 + 1
m , 0 < m < 1, 0 ≤

u0(x) and

u0(x) ∈ Lq−1+ 1
m (Ω), 3 > q > 1,

then (1)-(3) has a unique weak solution, which satis-
fies

um ∈ L∞
loc(0,∞;Lq+1− 1

m (Ω))
∩
L∞
loc(0,∞;W 1,p

0 (Ω)),

(15)
and

∥um(t)∥∞ ≤ c(1 + t−λ)(1 + t)−1/(p−1− 1
m
), t > 0,

(16)
where λ = N(pq + (p− 1− 1

m)N)−1. Moreover,

∥∇um∥p ≤ c(1 + t−µ)(1 + t)−σ, t > 0, (17)

where µ = 1 + m−1
m(p−1)−1 , σ = p[m(2α+1)−1]+m

[m(p−1)−1](p−1) .

By the way, we would like to point again that the
condition (A) implies that m < 1, and so that p >
2 by p > 1 + 1

m . However, in [12], p > 2 is an
independent condition to assure that (17) is true.

3 The L∞ estimation of the solution
Consider the regularized problem

ut = div((|∇um|2 + 1

k
)
p−2
2 ∇um)

+
N∑
i=1

∂bi(u
m, x, t)

∂xi
, (18)

u(x, 0) = u0k(x) + s, x ∈ Ω, (19)

u(x, t) = s, x ∈ ∂Ω, t ≥ 0, (20)

where 0 ≤ u0k(x) is a suitable smooth function such
that

lim
k→∞

∥u0k∥q−1+ 1
m

= ∥u0∥q−1+ 1
m
.

By [14], we know that (18)-(20) has a unique nonneg-
ative classical solution uks. Let s → 0. By a similar
way as [9], we are able to prove that

uks → uk, in C(S),

∇umks ⇀ ∇umk , in Lp(S),

ukst ⇀ ∇ukt, in L2(S),

|∇umks|p−2∇umksxi ⇀
∗

|∇umk |p−2∇umkxi , weakly star in L
∞
loc(0,∞;L

p
p−1 (Ω)),

and uk is the solution of the following problem

ut = div((|∇um|2 + 1

k
)
p−2
2 ∇um)
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+

N∑
i=1

∂bi(u
m, x, t)

∂xi
, (21)

u(x, 0) = u0k(x), x ∈ Ω, (22)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0. (23)

In what follows, in the proof of the related lemmas,
we only denote uk as u for simplicity.

Lemma 7 If uk is the solution of (21)-(23), then

umk ∈ L∞
loc(0,∞;Lq−1+ 1

m (Ω))

and

∥umk ∥q−1+ 1
m
≤ c(1 + t)

− 1

p−1− 1
m , t ≥ 0. (24)

Proof: Let An = (q − 2)n3−q, Bn = (3 − q)n2−q,
and

fn(s) =

{
sq−1, if s ≥ 1

n ,
Ans

2 +Bns, if 0 ≤ s < 1
n .

The assumption 3 > q > 1 assures that fn ≥ 0 and
f ′n(s) ≥ 0 when s ≥ 0. Suppose that n > k, multiply
(21) by fn(um) and integral over Ω. Then∫

Ω
fn(u

m)div(|∇um|2 + 1

k
)
p−2
2 ∇um)dx

= −
∫
Ω
(|∇um|2 + 1

k
)
p−2
2 |∇um|2f ′n(um)dx

≤ −
∫
Ω
|∇um|pf ′n(um)dx

= −
∫
Ω
| ∇
∫ um

0
(f ′n(s))

1
pds |p dx. (25)

Using the second integral mean value theorem, by (9),
we have ∫

Ω
fn(u

m)
N∑
i=1

∂bi(u
m, x, t)

∂xi
dx

= −
N∑
i=1

∫
Ω
bi(u

m, x, t)f ′n(u
m)
∂um

∂xi
dx

= −
N∑
i=1

∫
Ω

∂

∂xi

∫ um

0
bi(s)f

′
n(s)dsdx

+
N∑
i=1

∫
Ω

∫ um

0
bixi(s, x, t)f

′
n(s)dsdx

=

N∑
i=1

∫
Ω
bixi(ξ, x, t)

∫ um

0
f ′n(s)dsdx

≤ c
∫
Ω
um(q−1+ 1

m
)dx, (26)

By(25), (26), we have∫
Ω
fn(u

m)utdx+

∫
Ω
| ∇
∫ um

0
(f ′n(s))

1
pds |p dx

≤ c
∫
Ω
um(q−1+ 1

m
)dx,

by Poincare inequality, we have∫
Ω
fn(u

m)utdx+ c

∫
Ω
|
∫ um

0
(f ′n(s))

1
pds |p dx

≤ c
∫
Ω

∫
Ω
um(q−1+ 1

m
)dx. (27)

Let

Ω1t = Ω
∩
{x : |um| < 1

n
},Ω2t = Ω

∩
{x : |um| ≥ 1

n
}.

Then ∫
Ω
|
∫ um

0
(f ′n(s))

1
pds |p dx

=

∫
Ω1t

∪
Ω2t

|
∫ um

0
(f ′n(s))

1
pds |p dx. (28)

On Ω1t,

|
∫ um

0
(f ′n(s))

1
pds |p≤|

∫ um

0
| 2Ans+Bn |

1
p ds |p

≤ (2|q − 2|+ |3− q|)n1−q. (29)

On Ω2t,

|
∫ um

0
(f ′n(s))

1
pds |p= (q − 1)pp

(p+ q − 2)p
um(p+q−2).

(30)
In addition,

lim
n→∞

∫
Ω
fn(u

m)utdx

=
1

m(q − 1) + 1

d

dt

∫
Ω
um(q−1)+1dx. (31)

From (27)-(31), let n→∞. Then

d

dt

∫
Ω
um(q−1)+1dx+ c

∫
Ω
um[q−1+ 1

m
+p−1− 1

m
]dx

≤ c
∫
Ω
um(q−1+ 1

m
)dx. (32)
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By Jessen inequality, from (32) we get

d

dt
∥um∥q−1+ 1

m

q−1+ 1
m

+ c∥um∥q−1+ 1
m
+p−1− 1

m

q−1+ 1
m

≤ c
∫
Ω
um(q−1+ 1

m
)dx,

then by Lemma 3, we have

∥um∥q+1− 1
m
≤ c(1 + t)

− 1

p−1− 1
m .

Lemma 8 If uk is the solution of (21)-(23), then

∥umk ∥∞ ≤ ct−λ, 0 < t ≤ 1, (33)

∥umk ∥∞ ≤ c(1 + t)
− 1

p−1− 1
m , t ≥ 1, (34)

where λ = N
(p−1− 1

m
)N+q

.

Proof: Multiply (21) by um(l−1), and integral over Ω,
then ∫

Ω
um(l−1)utdx

=

∫
Ω
div(|∇um|2 + 1

k
)
p−2
2 ∇um)um(l−1)dx

+

N∑
i=1

∫
Ω

∂bi(u
m, x, t)

∂xi
um(l−1)dx

= −(l − 1)

∫
Ω
(|∇um|+ 1

k
)
p−2
2 |∇um|2um(l−2)dx

−(l − 1)
N∑
i=1

∫
Ω

∂

∂xi

∫ um

0
bi(s, x, t)s

(l−2)dsdx

+(l − 1)

N∑
i=1

∫
Ω

∫ um

0
bixi(s, x, t)s

(l−2)dsdx

= −(l − 1)

∫
Ω
(|∇um|+ 1

k
)
p−2
2 |∇um|2um(l−2)dx

+(l − 1)

N∑
i=1

∫
Ω
bixi(ξ, x, t)

∫ um

0
s(l−2)dsdx,

by (9), we can deduce that

d

dt
∥um∥l−1+ 1

m

l−1+ 1
m

+c(l − 1 +
1

m
)2−p

∫
Ω
| ∇um

p+l−1+ 1
m−1− 1

m
p |p dx

≤
∫
Ω
um(l−1+ 1

m
)dx.

Set L = l − 1 + 1
m . Then

d

dt
∥um∥LL+cL2−p

∫
Ω
| ∇um

L+p−1− 1
m

p |p dx ≤ ∥um∥LL,

(35)
where c is a constant independent of l.

Now, if we choose L1 = q, and let

Ln = rLn−1 − (p− 1− 1

m
),

θn = rN(1− Ln−1L
−1
n )(p+N(r − 1))−1,

µn = (Ln + p− 1− 1

m
)θ−1
n − Ln,

r > 1 + (p− 1− 1

m
),

n = 2, 3, · · ·. By Lemma 3, we have

∥um∥Ln ≤ cp/(Ln+p−1− 1
m
)

·∥um∥1−θnLn−1
∥∇um(Ln+p−1− 1

m
)/p∥pθn/(p−1− 1

m
+Ln)

p .

(36)
If we choose L = Ln in (35), by (36), we have

d

dt
∥um∥Ln

Ln
+c−p/θnL2−p

n ∥um∥Ln+µn
Ln

∥um∥p−1− 1
m
−µn

Ln−1

≤ ∥um∥Ln
Ln
. 0 < t ≤ 1. (37)

We will prove that there exist two bounded se-
quences {ξn}, {λn} such that

∥um∥Ln ≤ ξnt−λn , 0 < t ≤ 1. (38)

If n = 1, by Lemma 7, λ1 = 0,

ξ1 = sup
t≥0
∥um(t)∥q−1+ 1

m
,

then (38) is true. If (38) is true for n− 1, from (37),

d

dt
∥um∥Ln

Ln

+c−p/θnL2−p
n ∥um∥Ln+µn

Ln
ξ
p−1− 1

m
−µn

n−1 t−(p−1− 1
m
−µn)λn−1

≤ ∥um∥Ln
Ln
. 0 < t ≤ 1. (39)

we can choose

λn = (λn−1(µn − p+ 1 +
1

m
) + 1)µ−1

n ,

ξn = ξn−1(c
p/θnLp−1

n λn)
1/µn , n = 2, 3, · · · ,

by Lemma 3 and (39), we know (38) is also true for n.
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Moreover, as n → ∞, λn → λ = N
(p−1− 1

m
)N+q

.

It is easy to see that {ξn} is bounded. Thus, by Lemma
5, (33) is true.

To prove (34), we set τ = log(1 + t), t ≥ 1, and
set

w(τ) = (1 + t)
1

p−1− 1
m um(t).

By (35), we have

d

dτ
∥w(τ)∥LL + cL2−p∥∇w

L+p−1− 1
m

p ∥pp

≤ c∥w(τ)∥LL, τ ≥ log 2. (40)

By the lemma 3.1 in [26], we have

sup
t≥1
∥um(t)(1 + t)(p−1− 1

m
)−1∥∞ = sup

τ≥log 2
∥w(τ)∥

≤ cmax

{
1, sup
τ≥log 2

∥w(τ)∥q−1+ 1
m
, sup
τ≥log 2

∥w(τ)∥∞

}
= cmax {1, ∥um(1)∥∞,

sup
t≥1
∥(1 + t)

1

p−1− 1
m um(t)∥q−1+ 1

m

}
<∞,

which means (34) is true. ⊓⊔

4 The estimate of the gradient
We will get the estimate of the gradient ∇uk.

Lemma 9 If uk is the solution of (21)-(23), then

∥∇umk ∥p ≤ ct
−(1+ m−1

m(p−1)−1
)
, 0 < t ≤ 1, (41)

∥∇umk ∥p ≤ c(1 + t)
− p−m(p−1)

(m(p−1)−1)(p−1) , t ≥ 1. (42)

Proof: Multiply (21) by umt , and integral over Ω, then

m

∫
Ω
um−1(ut)

2dx

=

∫
Ω
div((|∇um|2 + 1

k
)
p−2
2 ∇um)umt dx

+

N∑
i=1

∂bi(u
m, x, t)

∂xi
umt dx. (43)

∫
Ω
div((|∇um|2 + 1

k
)
p−2
2 ∇um)umt dx

= −
∫
Ω
(|∇um|+ 1

k
)
p−2
2 ∇um∇umt dx

= −1

2

∫
Ω
(|∇um|2 + 1

k
)
p−2
2 |∇um|2tdx,

= −1

2

∫
Ω

d

dt

∫ |∇um|2

0
(s+

1

k
)
p−2
2 dsdx

= −1

2

d

dt
Γk(|∇um|2). (44)

By the assumption of (A), using Young inequality,

N∑
i=1

|
∫
Ω

∂bi(u
m, x, t)

∂xi
umt dx |

≤
N∑
i=1

∫
Ω
|b′i(um)||umxi ||u

m
t |dx

+
N∑
i=1

∫
Ω
|bixi(um, x, t)||umt |dx

≤ ε
∫
Ω
um−1(ut)

2dx+ c

∫
Ω
|um|

1
m
−1|∇um|2dx

+c

∫
Ω
u2dx. (45)

By (43)-(45), we have∫
Ω
um−1(ut)

2dx+
1

m

d

dt
Γk(|∇um|2)

≤ c
∫
Ω
|um|

1
m
−1|∇um|2dx+ c

∫
Ω
u2dx. (46)

Multiply (21) by um, and integral over Ω, then

1

m+ 1

∫
Ω

d

dt
um+1dx =

∫
Ω
div(|∇um|2

+
1

k
)
p−2
2 ∇um)umdx+

N∑
i=1

∫
Ω

∂bi(u
m, x, t)

∂xi
umdx

= −
∫
Ω
(|∇um|2 + 1

k
)
p−2
2 |∇um|2dx.

and

Γk(|∇um|2) ≤
∫
Ω
(|∇um|2 + 1

k
)
p−2
2 |∇um|2dx

= − 1

m+ 1

∫
Ω

d

dt
um+1dx

≤ 1

m+ 1
∥u

m+1
2 ∥2∥u

m−1
2 ut∥2,
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so

1

m

d

dt
Γk(|∇um|2) + (m+ 1)2∥u

m+1
2 ∥−2

2 Γ2
k(|∇um|2)

≤ c
∫
Ω
|um|

1
m
−1|∇um|2dx+ c

∫
Ω
u2dx. (47)

By Poincare inequality,∫
Ω
u2dx ≤ c

∫
Ω
|um|

1
m
−1|∇um|2dx.

Set 2γ = 1
m − 1, for ∀a ∈ [0, 2γ],∫
Ω
|um|2a|∇um|2dx ≤ ∥um(t)∥a∞

·
(∫

Ω
|um|

(2γ−a)p
p−2 dx

) p−2
p

∥∇um∥2p. (48)

If 2γ ≥ (p−2)(N +1)/N , let a = (2γ− (p−2)(1+
q
N ))+. By Lemma 2,(∫

Ω
|um|

(2γ−a)p
p−2 dx

) p−2
p

≤ c∥um(t)∥(2γ−a)(1−θ)s ∥∇um∥p−2
p , (49)

where

θ = (s−1− (1− 2

p
)(2γ−a)−1)/(N−1−p−1+ s−1),

s = (2γ − p+ 2− a)N/(p− 2)

when 2γ ≥ (p− 2)(1 + q/N), and

s = q

when

(p− 2)(1 +N−1) ≤ 2γ ≤ (p− 2)(1 + q/N).

By Lemma 7 and Lemma 8, from (48), we have∫
Ω
|um|2a|∇um|2dx ≤ ct−λa∥∇um∥pp

≤ ct−λaΓk(|∇um|2). 0 < t ≤ 1. (50)

If we choose q = 2 in Lemma 7, we have

∥um∥1+ 1
m

=

(∫
Ω
um+1dx

) m
m+1

≤ ct−(p−1− m
m+1

)−1

and

∥u
m+1

2 ∥22 =
∫
Ω
um+1dx ≤ ct−

m+1
m(p−1)−1 . (51)

By (47), we have

Γ′
k(t) + ct

m+1
m(p−1)−1Γ2

k(t)

≤ ct−λaΓk(t), 0 < t ≤ 1, (52)

If 2γ < (p−2)(N +1)/N and p−2 ≤ 2a ≤ 2γ,∫
Ω
|um|2a|∇um|2dx ≤ c∥∇um∥2a(1−θ)1 ∥∇um∥2aθ+2

p

≤ c∥∇um∥pp ≤ cΓk(|∇um|2). 0 < t ≤ 1. (53)

If 2γ < (p− 2)(N + 1)/N and p− 2 ≥ 2a ≥ 0,
when 0 < t ≤ 1,∫

Ω
|um|2a|∇um|2dx

≤ c(1 + ∥∇um∥pp) ≤ c(1 + Γk(|∇um|2)). (54)

(53) and (54) mean that (52) is still true when 2γ <
(p− 2)(N + 1)/N . Using Lemma 4,

Γk(t) ≤ ct
−(1+ m−1

m(p−1)−1
)
, 0 < t ≤ 1.

which means (41) is true. Now, we will prove (42).
For t ≥ 1, by (34)∫

Ω
|um|2a|∇um|2dx ≤ c∥∇um∥2p∥um(t)∥

2γ
2γp/p−2

≤ c(1 + t)−2γ/(p−1− 1
m
)∥∇um∥2p. t ≥ 1. (55)

Γk(|∇um|2) =
∫ |∇um|2

0
(s2 +

1

k
)
p−2
2 ds

≤ c∥∇um∥pp = c(∥∇um∥2p)
p
2 , t ≥ 1. (56)

∥u
m+1

2 ∥22 =
(∫

Ω
um+1dx

)2

≤ c(1 + t)−(p−1− 1
m
)−1
, t ≥ 1. (57)

by (47), using (55)-(57)

Γ′
k(t) + c(1 + t)−(p−1− 1

m
)−1

Γ2
k(t)

≤ c(1 + t)2γ/(p−1− 1
m
)(Γk(t))

2
p ,

using Young inequality,

Γ′
k(t) + c(1 + t)−(p−1− 1

m
)−1

Γ2
k(t)

≤ c(1 + t)
−m(2γp+1)

(m(p−1)−1)(p−1)

= c(1 + t)
− p−m(p−1)

(m(p−1)−1)(p−1) . (58)

By Lemma 4, we know that (42) is true.
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Lemma 10 If uk is the solution of (21)-(23), then∫ T

t

∫
Ω
um−1
k (ukt)

2dxds ≤ ct−(1+ m−1
m(p−1)−1

)

+ct
−(

λ(1−m)
2m

+ m−1
m(p−1)−1

)
, 0 < t ≤ T. (59)

Proof: From (33), (41), (47) and (50), we have∫ T

t

∫
Ω
um−1(ut)

2dxds ≤ Γk(t)

+c

∫ T

t

∫
Ω
|um|

1
m
−1|∇um|2dxds

≤ Γk(t) + c

∫ T

t
s−

λ
2
( 1
m
−1)Γk(s)ds

≤ ct−(1+ m−1
m(p−1)−1

)
+ ct

−(
λ(1−m)

2m
+ m−1

m(p−1)−1
)
. (60)

The lemma is proved. ⊓⊔

5 The main result and its proof
Now, we are able to prove the main theorem, which
has been quoted before as Theorem 6, and we restate
it here as follows.

Theorem 11 If (A) and p > 1 + 1
m , 0 < m < 1,

0 ≤ u0(x) and

u0(x) ∈ Lq−1+ 1
m (Ω), 3 > q > 1,

then (1)-(3) has a unique weak solution, which satis-
fies

um ∈ L∞
loc(0,∞;Lq+1− 1

m (Ω))
∩
L∞
loc(0,∞;W 1,p

0 (Ω)),

(15)
and

∥um(t)∥∞ ≤ c(1 + t−λ)(1 + t)−1/(p−1− 1
m
), t > 0,

(16)
where λ = N(pq + (p− 1− 1

m)N)−1. Moreover,

∥∇um∥p ≤ c(1 + t−µ)(1 + t)−σ, t > 0, (17)

where µ = 1 + m−1
m(p−1)−1 , σ = p[m(2α+1)−1]+m

[m(p−1)−1](p−1) .

Proof: From Lemma 7, Lemma 8, Lemma 9 and
Lemma 10, using the compactness theory (cf [13]),
there is a sequence (still denoted it as {uk}) of {uk}
such that when k →∞, we have

uk ⇀
∗
u,weakly star in L∞

loc(0,∞;Lm(q−1)+1(Ω)),
(61)

ukt ⇀ ut, weakly in L
2(0,∞;L2(Ω)), (62)

∇umk ⇀ ∇um, weakly in Lploc(0,∞;Lp(Ω)) (63)

|∇umk |p−2∇umkxi ⇀
∗
χi,

weakly star in L∞
loc(0,∞;L

p
p−1 (Ω)), (64)

where χ = {χi : 1 ≤ i ≤ N} and every χi is a func-
tion in L∞

loc(0,∞;L
p

p−1 (Ω)). (61)-(63) are clearly
true. In what follows, we only need to prove that

χ = |∇um|p−2∇um, inL∞
loc(0,∞;L

p
p−1 (Ω)). (65)

By the definition of the weak solution of (21)-(23), let
k →∞. We have∫ ∫

S
(uφt − χ · ∇φ

−
N∑
i=1

bi(u
m, x, t) · φxi)dxdt = 0, (66)

for ∀φ ∈ C∞
0 (S). So, if we are able to prove that∫ ∫
S
| ∇um |p−2 ∇um · ∇φdxdt

=

∫ ∫
S
χ · ∇φdxdt, (66)

then (65) and (13) are true.
Now, let’s prove this fact. For any ψ ∈ C∞

0 (S),
0 ≤ ψ ≤ 1; vm ∈ Lploc(0, T ;W

1,p
0 (Ω)), we have∫ ∫

S
ψ(| ∇umk |p−2 ∇umk

− | ∇vm |p−2 ∇vm) · ∇(umk − vm)dxdt ≥ 0, (67)

If we multiply with umk ψ on two hand sides of (21),
then we have∫ ∫

S
ψ

(
|∇umk |2 +

1

k

) p−2
2

|∇umk |2dxdt

=
1

m+ 1

∫ ∫
S
ψtu

m+1
k dxdt

−
∫ ∫

S
umk

(
|∇umk |2 +

1

k

) p−2
2

∇umk · ∇ψdxdt

−
N∑
i=1

∫ ∫
S
bi(u

m
k , x, t)(u

m
kxi
ψ+umk ψxi)dxdt. (68)

Noticing that p > 2, then

(|∇umk |2 +
1

k
)
p−2
2 |∇umk |2 ≥ |∇umk |p,

WSEAS TRANSACTIONS on MATHEMATICS Xin Si, Huashui Zhan

E-ISSN: 2224-2880 423 Volume 13, 2014



(|∇umk |2 +
1

k
)
p−2
2 |∇umk | ≤ (|∇umk |p−1 + 1),

by (67), (68), we have

1

m+ 1

∫ ∫
S
ψtu

m+1
k dxdt

−
∫ ∫

S
umk

(
|∇umk |2 +

1

k

) p−2
2

∇umk · ∇ψdxdt

−
N∑
i=1

∫ ∫
S
bi(u

m
k , x, t)(u

m
kxi
ψ + umk ψxi)dxdt

+(
1

k
)
p−2
2 mesΩ

−
∫ ∫

S
ψ|∇umk |p−2∇umk · ∇vmdxdt

−
∫ ∫

S
ψ|∇vm|p−2∇vm · ∇(umk − vm)dxdt ≥ 0.

(69)
Since (

|∇umk |2 +
1

k

) p−2
2

∇umk

= |∇umk |p−2∇umk +
p− 2

2k

∫ 1

0
(|∇umk |2+

s

k
)
p−4
2 ds∇umk ,

and

lim
k→∞

p− 2

k

∫ ∫
S

∫ 1

0
(|∇umk |2 +

s

k
)
p−4
2 ds

·∇umk · ∇ψumk dxdt = 0,

if we let k →∞ in (69), we have

1

m+ 1

∫ ∫
S
ψtu

m+1dxdt

−
N∑
i=1

∫ ∫
S
bi(u

m, x, t)(umxiψ + umψxi)dxdt

−
∫ ∫

S
ψ∇χ · ∇vmdxdt

−
∫ ∫

S
ψ|∇vm|p−2∇vm · ∇(um − vm)dxdt ≥ 0.

(70)
Now, we choose φ = ψum in (66),

1

m+ 1

∫ ∫
S
ψtu

m+1dxdt

−
N∑
i=1

∫ ∫
S
bi(u

m, x, t) · (ψxium + ψumxi)dxdt

−
∫ ∫

S
umχ · ∇ψdxdt

−
∫ ∫

S
ψχ · ∇umdxdt = 0.

From this formula and (70), we have∫ ∫
S
ψ(χ− |∇vm|p−2∇vm) · ∇(um − vm)dxdt

≥ 0. (71)

Let vm = um − λφ, λ ≥ 0, φ ∈ C∞
0 (S). Then∫ ∫

S
ψ(χi−|∇(um−λφ)|p−2(um−λφ)xi)φxidxdt

≥ 0.

Let λ→ 0. We obtain∫ ∫
S
ψ(χi − |∇um|p−2umxi)φxidxdt ≥ 0. (72)

Moreover, if we choose λ ≤ 0, we are able to get∫ ∫
S
ψ(χi − |∇um|p−2umxi)φxidxdt ≤ 0. (73)

Now, if we choose ψ such that suppφ ⊂ suppψ,
and on suppφ, ψ = 1, then from (72)-(73), we can
get (65), and so (13) is true.

Next, we are to prove (14).
For small r > 0, denote Ωr = {x ∈ Ω :

dist(x, ∂Ω) ≤ r}. For any η > 0, let

sgnη(s) =


1, if s > η,
s
η , if |s| ≤ η,
−1, if s < −η.

For any given small r > 0, large enough k, l, we
declare that ∫

Ω2r

|uk(x, t)− ul(x, t)|dx

≤
∫
Ωr

|uk(x, 0)− ul(x, 0)|dx+ cr(t), (74)

where cr(t) is independent of k, l, and limt→0 cr(t) =
0. By (21) ∫ t

0

∫
Ωr

φ(ukt − ult)dxdτ

+

∫ t

0

∫
Ωr

∇φ[(|∇umk |2 +
1

k
)
p−2
2 ∇umk
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−(|∇uml |2 +
1

l
)
p−2
2 ∇uml ]dxdτ

+

N∑
i=1

∫ t

0

∫
Ωr

[bi(u
m
k , x, t)− bi(uml , x, t)]∇φdxdτ

= 0, (75)

for ∀φ ∈ Lp(0, T ;W 1,p
0 (Ω)). Suppose that ξ(x) ∈

C1
0 (Ωr) such that

0 ≤ ξ ≤ 1; ξ |Ω2r= 1,

and choose φ = ξsgnη(u
m
k − uml ) in (75), then∫ t

0

∫
Ωr

ξsgnη(u
m
k − uml )(ukt − ult)dxdτ

+

∫ t

0

∫
Ωr

[(|∇umk |2 +
1

k
)
p−2
2 ∇umk

−(x|∇uml |2 +
1

l
)
p−2
2 ∇uml ]∇ξsgnη(umk − uml )dxdτ

+

∫ t

0

∫
Ωr

[(|∇umk |2 +
1

k
)
p−2
2 ∇umk

−(x|∇uml |2 +
1

l
)
p−2
2 ∇uml ]∇(umk − uml )

·ξsgn′η(umk − uml )dxdτ

+
N∑
i=1

∫ t

0

∫
Ωr

[bi(u
m
k , x, t)− bi(uml , x, t)]

·∇ξsgnη(umk − uml )dxdτ

+
N∑
i=1

∫ t

0

∫
Ωr

[bi(u
m
k , x, t)−bi(uml , x, t)]∇(umk −uml )

·ξsgn′η(umk − uml )dxdτ = 0. (76)

If we notice that the third term and the fifth term in the
left hand side on (76) tend to zero when η → 0, then
we have

lim
η→0

∫ t

0

∫
Ωr

ξsgnη(u
m
k − uml )(ukt − ult)dxdτ

+ lim
η→0

∫ t

0

∫
Ωr

[(|∇umk |2 +
1

k
)
p−2
2 ∇umk

−(|∇uml |2 +
1

l
)
p−2
2 ∇uml ]∇ξsgnη(umk − uml )dxdτ

+
N∑
i=1

lim
η→0

∫ t

0

∫
Ωr

[bi(u
m
k , x, t)− bi(uml , x, t)]∇

·ξsgnη(umk − uml )dxdτ = 0. (77)

At the same time,

lim
η→0

∫ t

0

∫
Ωr

ξsgnη(u
m
k − uml )(ukt − ult)dxdτ

=

∫ t

0

∫
Ωr

ξsgn(umk − uml )(ukt − ult)dxdτ

=

∫ t

0

∫
Ωr

ξsgn(uk − ul)(ukt − ult)dxdτ

lim
η→0

∫ t

0

∫
Ωr

ξsgnη(uk − ul)(ukt − ult)dxdτ

= lim
η→0

∫ t

0

∫
Ωr

ξ(

∫ uk−ul

0
sgnη(s)ds)τdxdτ

= lim
η→0

∫ t

0

∫
Ωr

ξ

∫ uk−ul

0
sgnη(s)ds |t0 dx

=

∫
Ωr

ξ|uk − ul|dx−
∫
Ωr

ξ|u0k − u0l|dx. (78)

By (77)(78), we have∫
Ω2r

ξ|uk − ul|dx ≤
∫
Ωr

|u0k − u0l|dx

+c

∫ t

0

∫
Ωr

[(|∇umk |2+
1

k
)
p−1
2 +(|∇uml |2+

1

l
)
p−1
2 ]dxdτ

+c
N∑
i=1

∫ t

0

∫
Ωr

|bi(umk , x, t)− bi(uml , x, t)|dxdτ,

which means (74) is true.
Now, for any given small r, if k, l are large

enough, by (74), we have∫
Ω2r

|u(x, t)−u0(x)|dx ≤
∫
Ωr

|u(x, t)−uk(x, t)|dx

+

∫
Ω2r

|u0k(x)− u0l(x)|dx

+

∫
Ω2r

|ul(x, t)−u0l(x)|dx+
∫
Ω2r

|u0l(x)−u0(x)|dx

letting t→ 0, we get (14).
At last, we are to prove the uniqueness of the so-

lutions. For any positive integer n, let gn(s) be an odd
function and

gn(s) =

{
1, if s > 1

n ,

n2s2e1−n
2s2 , if s ≤ 1

n .

Let u1, u2 be two solutions of (1)-(3) with the ini-
tial value u01(x), u02(x) respectively. Multiplying (1)
with gn(um1 −um2 ) and making integral on Ω, we have∫

Ω
gn(u

m
1 − um2 )(u1t − u2t)dx

WSEAS TRANSACTIONS on MATHEMATICS Xin Si, Huashui Zhan

E-ISSN: 2224-2880 425 Volume 13, 2014



+

∫
Ω
[|∇|um1 |p−2|∇um1 −|∇|um2 |p−2|∇um2 ]×

∇(um1 −um2 )g′ndx

+

N∑
i=1

∫
Ω
[bi(u

m
1 , x, t)− bi(um2 , x, t)]×

(um1 − um2 )xig
′
ndx

= 0, (79)

lim
n→∞

∫
Ω
gn(u

m
1 −um2 )(u1t−u2t)dx =

d

dt
∥u1−u2∥1,

∫
Ω
[|∇|um1 |p−2|∇um1 − |∇|um2 |p−2|∇um2 ]×

∇(um1 − um2 )g′ndx
≥ 0,

N∑
i=1

∣∣∣∣ limn→∞

∫
Ω
[bi(u

m
1 , x, t)−bi(um2 , x, t)]×

(um1−um2 )xig
′
ndx

∣∣
≤ 6 lim

n→∞

N∑
i=1∫

Ω∩{|um1 −um2 |≤ 1
n
}

|b′i(ξ, x, t)||(um1−um2 )xi |dx

= 0,

due to 0 ≤ g′(s) ≤ 6s−1 when |s| ≤ 1
n , and using the

fact of that b′i(0, x, t) = 0.
Let n→∞ in (79). We have

d

dt
∥u1 − u2∥1 ≤ 0, (80)

which implies that∫
Ω
|u1(x, t)−u2(x, t)|dx ≤

∫
Ω
|u01(x)−u02(x)|dx,

is true for ∀t ≥ 0.
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