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Abstract: Let T ⊂ R be a periodic time scale in shifts δ± with period P ∈ (t0,∞)T and t0 ∈ T is nonnegative
and fixed. By using a multiple fixed point theorem in cones, some criteria are established for the existence and
multiplicity of positive solutions in shifts δ± for a class of higher-dimensional functional dynamic equations with
feedback control on time scales of the following form:{

x∆(t) = A(t)x(t) + b(t)f(t, x(τ(t)), u(t)),
u∆(t) = −r(t)u(t) + g(t)x(t), t ∈ T,

where A(t) = (aij(t))n×n is a nonsingular matrix with continuous real-valued functions as its elements. Finally,
numerical examples are presented to illustrate the feasibility and effectiveness of the results.
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1 Introduction
In the past few years, different types of ecosystems
with feedback controls have been studied extensively
both in theory and applications [1-6]. The reasons for
introducing control variables are based on main two
points. On one hand, ecosystems in the real world
are continuously distributed by unpredictable forces
which can result in changes in the biological param-
eters such as survival rates. Of practical interest in
ecology is the question of whether or not an ecosys-
tem can withstand those unpredictable disturbances
which persist for a finite period of time. In the lan-
guage of control variables, we call the disturbance
functions as control variables (for more details, one
can see [7]). On the other hand, in the literature, it
has been proved that, under certain conditions, some
species are permanent, but some may possibly be ex-
tinct in the competitive system, for example, see [8].
In order to search for certain schemes to ensure all the
species coexist, feedback control variables should be
introduced to ecosystem.

In fact, both continuous and discrete systems
are very important in implementation and applica-
tion. The study of dynamic equations on time scales,
which unifies differential, difference, h-difference, q-
differences equations and more, has received much at-
tention; see, for example, [9-12] and the references

therein.
The theory of dynamic equations on time scales

was introduced by Hilger in his Ph.D. thesis in 1988
[13]. The existence problem of periodic solutions is
an important topic in qualitative analysis of functional
dynamic equations. Up to now, there are only a few re-
sults concerning periodic solutions of dynamic equa-
tions on time scales; see, for example, [14-17]. In
these papers, authors considered the existence of pe-
riodic solutions for dynamic equations on time scales
satisfying the condition “there exists a ω > 0 such that
t± ω ∈ T, ∀t ∈ T.” Under this condition all periodic
time scales are unbounded above and below. How-
ever, there are many time scales such as qZ = {qn :

n ∈ Z}∪{0} and
√
N = {

√
n : n ∈ N} which do not

satisfy this condition. Adıvar and Raffoul introduced
a new periodicity concept on time scales which does
not oblige the time scale to be closed under the oper-
ation t ± ω for a fixed ω > 0. They defined a new
periodicity concept with the aid of shift operators δ±
which are first defined in [18] and then generalized in
[19].

Recently, based on a fixed-point theorem in
cones, several researchers studied the existence of
positive periodic solutions in shifts δ± for some non-
linear first-order functional dynamic equation on time
scales; see [20-23]. However, to the best of our knowl-

WSEAS TRANSACTIONS on MATHEMATICS Meng Hu, Pingli Xie

E-ISSN: 2224-2880 10 Volume 14, 2015



edge, there are few papers published on the existence
of positive periodic solutions in shifts δ± for higher-
dimensional functional dynamic equations with feed-
back control on time scales, especially systems with
the coefficient matrix being an arbitrary nonsingular
n× n matrix.

Motivated by the above, in the present paper, we
consider the following system:{
x∆(t) = A(t)x(t) + b(t)f(t, x(τ(t)), u(t)),
u∆(t) = −r(t)u(t) + g(t)x(t), t ∈ T, (1)

where T ⊂ R is a periodic time scale in shifts δ±
with period P ∈ [t0,∞)T and t0 ∈ T is nonnega-
tive and fixed; A = (aij)n×n is a nonsingular ma-
trix with continuous real-valued functions as its ele-
ments, A ∈ R, and aij ∈ C(T,R) is ∆-periodic in
shifts δ± with period ω; b = diag(b1, b2, · · · , bn), and
bi ∈ C(T,R) is ∆-periodic in shifts δ± with period ω;
f = (f1, f2, · · · , fn)T , and fi ∈ C(T×Rn ×Rn,R)
is periodic in shifts δ± with period ω with respect to
the first variable; τ ∈ C(T,T) is periodic in shifts δ±
with period ω; r = diag(r1, r2, · · · , rn), −r ∈ R and
ri ∈ C(T,R) is ∆-periodic in shifts δ± with period
ω; g = diag(g1, g2, · · · , gn), and gi ∈ C(T,R) is
∆-periodic in shifts δ± with period ω.

In [24], Hu and Xie studied the existence of posi-
tive periodic solutions of system (1) on a periodic time
scale T with b(t) = 1. The time scale T considered
in [24] is unbounded above and below. Moreover, the
condition (P4) in [24] is too strict so that it cannot be
satisfied even if the coefficient matrix A is a diagonal
matrix. Therefore, the results in [24] are less applica-
ble.

The main purpose of this paper is to study the ex-
istence and multiplicity of positive periodic solutions
in shifts δ± of system (1) under more general assump-
tions. By using Leggett-Williams fixed point theorem,
sufficient conditions for the existence of at least three
positive periodic solutions in shifts δ± of system (1)
will be established. The results presented in this pa-
per improve and generalize the results in [24].

In this paper, for each x = (x1, x2, · · · , xn)T ∈
C(T,Rn), the norm of x is defined as ∥x∥ =

sup
t∈[t0,δω+(t0)]T

|x(t)|0, where |x(t)|0 =
n∑
i=1

|xi(t)|, and

when it comes to that x is continuous, delta deriva-
tive, delta integrable, and so forth; we mean that each
element xi is continuous, delta derivative, delta inte-
grable, and so forth.

The organization of this paper is as follows. In
Section 2, we introduce some notations and defini-
tions and state some preliminary results needed in
later sections. In Section 3, we establish our main re-
sults for positive periodic solutions in shifts δ± by ap-

plying Leggett-Williams fixed point theorem. In Sec-
tion 4, numerical examples are presented to illustrate
that our results are feasible and more general.

2 Preliminaries
Let T be a nonempty closed subset (time scale) of R.
The forward and backward jump operators σ, ρ : T →
T and the graininess µ : T → R+ are defined, respec-
tively, by

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t}
µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >
t. If T has a left-scattered maximum m, then Tk =
T\{m}; otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → Rn is right-dense continuous
provided it is continuous at right-dense point in T and
its left-side limits exist at left-dense points in T. If f
is continuous at each right-dense point and each left-
dense point, then f is said to be a continuous function
on T. The set of continuous functions f : T → Rn
will be denoted by C(T) = C(T,Rn).

For the basic theories of calculus on time scales,
see [25].

Definition 1. ([25]) An n× n-matrix-valued function
A on a time scale T is called regressive (with respect
to T ) provided

I + µ(t)A(t)

is invertible for all t ∈ Tk. The set of all regressive
and rd-continuous functions A : T → Rn×n will be
denoted by R = R(T,Rn×n).

Definition 2. ([25]) Let t0 ∈ T and assume that A is
a regressive n×n-matrix-valued function. The unique
matrix-valued solution of the IVP

Y ∆ = A(t)Y, Y (t0) = I,

where I denotes as usual the n × n-identity matrix,
is called the matrix exponential function(at t0), and is
denoted by eA(·, t0).

Lemma 3. ([25]) If A is a regressive n × n-matrix-
valued functions on T, then
(i) e0(t, s) ≡ I and eA(t, t) ≡ I;
(ii) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s);
(iii) eA(t, s) = e−1

A (s, t);
(iv) eA(t, s)eA(s, r) = eA(t, r).
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Lemma 4. ([25]) Let A be a regressive n×n-matrix-
valued function on T and suppose that f : T → Rn is
rd-continuous. Let t0 ∈ T and

y∆ = A(t)y + f(t), y(t0) = y0

has a unique solution y : T → Rn. Moreover, the
solution is given by

y(t) = eA(t, t0)y0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ.

The following definitions, lemmas about the shift
operators and the new periodicity concept for time
scales which can be found in [26].

Let T∗ be a non-empty subset of the time scale
T and t0 ∈ T∗ be a fixed number, define operators
δ± : [t0,∞) × T∗ → T∗. The operators δ+ and δ−
associated with t0 ∈ T∗(called the initial point) are
said to be forward and backward shift operators on
the set T∗, respectively. The variable s ∈ [t0,∞)T in
δ±(s, t) is called the shift size. The value δ+(s, t) and
δ−(s, t) in T∗ indicate s units translation of the term
t ∈ T∗ to the right and left, respectively. The sets

D± := {(s, t) ∈ [t0,∞)T × T∗ : δ∓(s, t) ∈ T∗}

are the domains of the shift operator δ±, respectively.
Hereafter, T∗ is the largest subset of the time scale T
such that the shift operators δ± : [t0,∞) × T∗ → T∗

exist.

Definition 5. ([26]) (Periodicity in shifts δ±) Let T
be a time scale with the shift operators δ± associated
with the initial point t0 ∈ T∗. The time scale T is said
to be periodic in shifts δ± if there exists p ∈ (t0,∞)T∗

such that (p, t) ∈ D± for all t ∈ T∗. Furthermore, if

P := inf{p ∈ (t0,∞)T∗ : (p, t) ∈ δ±,∀t ∈ T∗} ̸= t0,

then P is called the period of the time scale T.

Definition 6. ([26]) (Periodic function in shifts δ±)
Let T be a time scale that is periodic in shifts δ± with
the period P . We say that a real-valued function f
defined on T∗ is periodic in shifts δ± if there exists ω ∈
[P,∞)T∗ such that (ω, t) ∈ D± and f(δω±(t)) = f(t)
for all t ∈ T∗, where δω± := δ±(ω, t). The smallest
number ω ∈ [P,∞)T∗ is called the period of f .

Definition 7. ([26]) (∆-periodic function in shifts δ±)
Let T be a time scale that is periodic in shifts δ± with
the period P . We say that a real-valued function f
defined on T∗ is ∆-periodic in shifts δ± if there exists
ω ∈ [P,∞)T∗ such that (ω, t) ∈ D± for all t ∈ T∗,
the shifts δω± are ∆-differentiable with rd-continuous
derivatives and f(δω±(t))δ

∆ω
± (t) = f(t) for all t ∈

T∗, where δω± := δ±(ω, t). The smallest number ω ∈
[P,∞)T∗ is called the period of f .

Lemma 8. ([26]) δω+(σ(t)) = σ(δω+(t)) and
δω−(σ(t)) = σ(δω−(t)) for all t ∈ T∗.

Lemma 9. ([26]) Let T be a time scale that is pe-
riodic in shifts δ± with the period P , and let f be
a ∆-periodic function in shifts δ± with the period
ω ∈ [P,∞)T∗ . Suppose that f ∈ Crd(T), then∫ t

t0

f(s)∆s =

∫ δω±(t)

δω±(t0)
f(s)∆s.

Lemma 10. ([23]) Let T be a time scale that is pe-
riodic in shifts δ± with the period P . Suppose that
the shifts δω± are ∆-differentiable on t ∈ T∗ where
ω ∈ [P,∞)T∗ and A ∈ R is ∆-periodic in shifts δ±
with the period ω. Then

eA(δ
ω
±(t), δ

ω
±(t0)) = eA(t, t0) for t, t0 ∈ T∗.

Lemma 11. ([23]) Let T be a time scale that is pe-
riodic in shifts δ± with the period P . Suppose that
the shifts δω± are ∆-differentiable on t ∈ T∗ where
ω ∈ [P,∞)T∗ and A ∈ R is ∆-periodic in shifts δ±
with the period ω. Then

eA(δ
ω
±(t), σ(δ

ω
±(s))) = eA(t, σ(s)) for t, s ∈ T∗.

Set

X =
{
x(t) : x(t) ∈ C(T,Rn), x(δω+(t)) = x(t)

}
with the norm defined by ∥x∥ = sup

t∈[t0,δω+(t0)]T

|x(t)|0,

where |x(t)|0 =
n∑
i=1

|xi(t)|, thenX is a Banach space.

Lemma 12. The function x ∈ X is an ω-periodic
solution in shifts δ± of system (1) if and only if x is an
ω-periodic solution in shifts δ± of

x(t) =

∫ δω+(t)

t
G(t, s)b(s)f(s, x(τ(s)), (Φx)(s))∆s,

(2)

where

G(t, s) =
[
eA(t0, δ

ω
+(t0))− I

]−1
eA(t, σ(s))

:= (Gik)n×n, (3)

and Φ(x) is defined in (4).

Proof. If u(t) is an ω-periodic solution in shifts δ± of
the second equation of system (1). By using Lemma
4, for s ∈ [t, δω+(t)]T, we have

u(s) = e−r(s, t)u(t)

+

∫ s

t
e−r(s, σ(θ))g(θ)x(θ)∆θ.
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Let s = δω+(t) in the above equality, we have

u(δω+(t)) = e−r(δ
ω
+(t), t)u(t)

+

∫ δω+(t)

t
e−r(δ

ω
+(t), σ(θ))g(θ)x(θ)∆θ.

Noting that u(δω+(t)) = u(t) and e−r(t, δ
ω
+(t)) =

e−r(t0, δ
ω
+(t0)), then

u(t) =

∫ δω+(t)

t
Ḡ(t, s)g(s)x(s)∆s

:= (Φx)(t), (4)

where

Ḡ(t, s) =
[
e−r(t0, δ

ω
+(t0))− I

]−1
e−r(t, σ(s)).

Let u(t) be an ω-periodic solution in shifts δ± of
(4). By (4) and Lemma 8, we have

u∆(t)

= −r(t)u(t)
+Ḡ(σ(t), δω+(t))g(δ

ω
+(t))δ

∆ω
+ (t)x(δω+(t))

−Ḡ(σ(t), t)g(t)x(t)
= −r(t)u(t) + g(t)x(t).

Denote (Φx) = ((Φ1x), (Φ2x), · · · , (Φnx))T ,
then any ω-periodic solutions in shifts δ± of system
(1) is equivalent to that of the following equation

x∆(t) = A(t)x(t) + b(t)f(t, x(τ(t)), (Φx)(t)).

Again using Lemma 4, repeating the above pro-
cess, we have

x(t) =

∫ δω+(t)

t
G(t, s)b(s)f(s, x(τ(s)), (Φx)(s))∆s,

where

G(t, s) =
[
eA(t0, δ

ω
+(t0))− I

]−1
eA(t, σ(s)).

This completes the proof.

By using Lemma 10 and Lemma 11, it is easy to
verify that the Green’s function G(t, s) satisfies

G(δω+(t), δ
ω
+(s)) = G(t, s), ∀t ∈ T∗, s ∈ [t, δω+(t)]T.

(5)

For convenience, we introduce the following no-
tations:

A1 := min
1≤k≤n

inf
s,t∈[t0,δω+(t0)]T

|
n∑
i=1

Gik(t, s)|,

B1 := max
1≤k≤n

sup
s,t∈[t0,δω+(t0)]T

|
n∑
i=1

Gik(t, s)|.

Hereafter, we assume that

(P1) A1 > 0, B1 > 0;

(P2) Gikbkfk ≥ 0, ∀ i, k = 1, 2, · · · , n.

Let

K =
{
x ∈ X : |x(t)|0 ≥ ξ∥x∥, t ∈ [t0, δ

ω
+(t0)]T

}
,

(6)

where ξ = A1
B1

∈ (0, 1). Obviously, K is a cone in X .
Define an operator H by

(Hx)(t)

=

∫ δω+(t)

t
G(t, s)b(s)f(s, x(τ(s)), (Φx)(s))∆s, (7)

for all x ∈ K, t ∈ T, where G(t, s) is defined by (3)
and

(Hx)(t)

= ((H1x)(t), (H2x)(t), · · · , (Hnx)(t))
T , (8)

where

(Hix)(t)

=

∫ δω+(t)

t

n∑
k=1

Gikbk(s)fk(s, x(τ(s)), (Φx)(s))∆s,

i = 1, 2, · · · , n.

In the following, we shall give some lemmas con-
cerning K and H defined by (6) and (7), respectively.

Lemma 13. Assume that (P1) − (P2) hold, then H :
K → K is well defined.

Proof. For any x ∈ K. In view of (7), by Lemma 9
and (5), for t ∈ T, we obtain

(Hx)(δω+(t))

=

∫ δω+(δω+(t))

δω+(t)
G(δω+(t), s)b(s)

×f(s, x(τ(s)), (Φx)(s))∆s

=

∫ δω+(t)

t
G(δω+(t), δ

ω
+(s))b(δ

ω
+(s))δ

∆ω
+ (s)

×f(δω+(s), x(τ(δω+(s))), (Φx)(δω+(s)))∆s

=

∫ δω+(t)

t
G(t, s)b(s)f(s, x(τ(s)), (Φx)(s))∆s

= (Hx)(t),

that is, Hx ∈ X .
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Furthermore, for any x ∈ K, ∀ t ∈ [t0, δ
ω
+(t0)]T,

by (P2), we have

|(Hx)(t)|0

=

∣∣∣∣ ∫ δω+(t)

t
G(t, s)b(s)f(s, x(τ(s)), (Φx)(s))∆s

∣∣∣∣
0

=

n∑
i=1

∣∣∣∣ ∫ δω+(t)

t

n∑
k=1

Gikbk(s)

×fk(s, x(τ(s)), (Φx)(s))∆s
∣∣∣∣

≥ A1

∫ δω+(t)

t

n∑
k=1

|bk(s)fk(s, x(τ(s)), (Φx)(s))|∆s

= A1

∫ δω+(t0)

t0

|b(s)f(s, x(τ(s)), (Φx)(s))|0∆s

=
A1

B1
B1

∫ δω+(t0)

t0

|b(s)f(s, x(τ(s)), (Φx)(s))|0∆s

≥ ξ∥Hx∥,

that is, Hx ∈ K. This completes the proof.

Define

Bm := min
1≤i≤n

∫ δω+(t0)

t0

|bi(s)|∆s,

BM := max
1≤i≤n

∫ δω+(t0)

t0

|bi(s)|∆s.

Lemma 14. Assume that (P1) − (P2) hold, then H :
K → K is completely continuous.

Proof. We first show that H is continuous. Because
of the continuity of f , for any ν > 0 and ε > 0, there
exists a η > 0 such that{
ϕ, ψ ∈ C(T,Rn), ∥ϕ∥ ≤ ν, ∥ψ∥ ≤ ν, ∥ϕ−ψ∥ < η

}
implying

|f(s, ϕ(τ(s)), (Φϕ)(s))− f(s, ψ(τ(s)), (Φψ)(s))|0
<

ε

B1BM
.

Therefore, if x, y,∈ K with ∥x∥ ≤ ν, ∥y∥ ≤ ν, ∥x−
y∥ < η, then

|(Hx)(t)− (Hy)(t)|0

≤
n∑
i=1

∣∣∣∣ ∫ δω+(t)

t

n∑
k=1

Gikbk(s)

×fk(s, x(τ(s)), (Φx)(s))∆s

−
∫ δω+(t)

t

n∑
k=1

Gikbk(s)

×fk(s, y(τ(s)), (Φy)(s))∆s
∣∣∣∣

≤
∫ δω+(t)

t

n∑
k=1

|
n∑
i=1

Gik||bk(s)

×fk(s, x(τ(s)), (Φx)(s))
−bk(s)fk(s, y(τ(s)), (Φy)(s))|∆s

< B1

(∫ δω+(t)

t
|b(s)f(s, x(τ(s)), (Φx)(s))

−b(s)f(s, y(τ(s)), (Φy)(s))|0∆s
)

< B1B
M ε

B1BM
= ε,

for all t ∈ [t0, δ
ω
+(t0)]T, which yields

∥Hx−Hy∥ = sup
t∈[t0,δω+(t0)]T

|(Hx)(t)− (Hy)(t)|0

≤ ε,

that is, H is continuous.
Next, we show that H maps any bounded sets in

K into relatively compact sets. We first prove that
f maps bounded sets into bounded sets. Indeed, let
ε = 1, for any ν > 0, there exists η > 0 such that{
x, y ∈ K, ∥x∥ ≤ ν, ∥y∥ ≤ ν, ∥x − y∥ < η, s ∈

[t0, δ
ω
+(t0)]T

}
implying

|f(s, x(τ(s)), (Φx)(s))−f(s, y(τ(s)), (Φy)(s))|0 < 1.

Choose a positive integer N such that ν
N < η. Let

x ∈ K and define xk(·) = x(·)k
N , k = 0, 1, 2, · · · , N .

If ∥x∥ < ν, then

∥xk − xk−1∥ = sup
t∈[t0,δω+(t0)]T

∣∣∣∣x(·)kN
− x(·)(k − 1)

N

∣∣∣∣
0

≤ ∥x∥ 1

N
≤ ν

N
< η.

So

|f(s, xk(τ(s)), (Φxk)(s))
−f(s, xk−1(τ(s)), (Φxk−1)(s))|0 < 1,

for all s ∈ [t0, δ
ω
+(t0)]T, and this yields

|f(s, x(τ(s)), (Φx)(s))|0
= |f(s, xN (τ(s)), (ΦxN )(s))|0

≤
N∑
k=1

|f(s, xk(τ(s)), (Φxk)(s))

−f(s, xk−1(τ(s)), (Φxk−1)(s))|0 + |f(s, 0, 0)|0
< N + sup

s∈[t0,δω+(t0)]T

|f(s, 0, 0)|0 =:W. (9)
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It follows from (8) and (9) that for t ∈ [t0,
δω+(t0)]T,

∥Hx∥ = sup
t∈[t0,δω+(t0)]T

n∑
i=1

|(Hix)(t)| ≤ B1WBM

:= D.

Finally, for t ∈ T, we have

(Hx)∆(t) = A(t)(Hx)(t)

+b(t)f(t, x(τ(t)), (Φx)(t)).

So

|(Hx)∆(t)|0
= |A(t)(Hx)(t) + b(t)f(t, x(τ(t)), (Φx)(t))|0
≤ AuD +BuW,

where Au := max
1≤j≤n

sup
t∈[t0,δω+(t0)]T

n∑
i=1

|aij(t)|, Bu :=

max
1≤i≤n

sup
t∈[t0,δω+(t0)]T

|bi(t)|.

To sum up,
{
Hx : x ∈ K, ∥x∥ ≤ ν

}
is a family

of uniformly bounded and equiv-continuous function-
als on [t0, δ

ω
+(t0)]T. By a theorem of Arzela-Ascoli,

we know that the functional H is completely continu-
ous. This completes the proof.

3 Main results
In this section, we shall state and prove our main re-
sults about the existence of at least three positive peri-
odic solutions of system (1) via the Leggett-Williams
fixed point theorem.

Let X be a Banach space with cone K. A map α
is said to be a nonnegative continuous concave func-
tional on K if α : K → [0,+∞) is continuous and

α(λx+ (1− λ)y) ≥ λα(x) + (1− λ)α(y)

for all x, y ∈ K, 0 < λ < 1.
Let a, b be two numbers such that 0 < a < b and

α be a nonnegative continuous concave functional on
K. We define the following convex sets:

Ka = {x ∈ K : ∥x∥ < a},
K(α, a, b) = {x ∈ K : a ≤ α(x), ∥x∥ ≤ b}.

Lemma 15. ([27]) (Leggett-Williams fixed point theo-
rem) LetH : Kc → Kc be completely continuous and
α be a nonnegative continuous concave functional on
K such that α(x) ≤ ∥x∥ for all x ∈ Kc. Suppose that
there exist 0 < d < a < b ≤ c such that

(1) {x ∈ K(α, a, b) : α(x) > a} ̸= ∅ and α(Hx) >
a for x ∈ K(α, a, b);

(2) ∥Hx∥ < d for all ∥x∥ ≤ d;

(3) α(Hx) > a for all x ∈ K(α, a, c) with
∥H(x)∥ > b.

Then H has at least three fixed points x1, x2, x3 ∈
Kc satisfying ∥x1∥ < d, a < α(x2), ∥x3∥ > d and
α(x3) < a.

For convenience, we introduce the following no-
tations:

fϑ := lim sup
∥u∥→ϑ

sup
t∈[t0,δω+(t0)]T

|f(t, u)|0
∥u∥

,

fb := min
ξb≤|u|0≤b

inf
t∈[t0,δω+(t0)]T

|f(t, u)|0.

Theorem 16. Assume that (P1)−(P2) hold, and there
exist a number b > 0 such that the following condi-
tions:

(i) f0 < 1
B1

, f∞ < 1
B1

;

(ii) Bmfb >
ξb
A1

for ξb ≤ |u|0 ≤ b, t ∈ T;

hold. Then system (1) has at least three positive ω-
periodic solutions in shifts δ±.

Proof. By the condition f∞ < 1
B1

of (i), one can find
that for

0 < ε <
1

B1
− f∞,

there exists a c0 > b such that

|f(s, u,Φu)|0 ≤
f∞ + ε

BM
∥u∥,

where ∥u∥ > c0.
Let c1 = c0

ξ , if x ∈ K, ∥x∥ > c1, then ∥x∥ > c0,
and we have

|(Hx)(t)|0

=

∣∣∣∣ ∫ δω+(t)

t
G(t, s)b(s)f(s, x(τ(s)), (Φx)(s))∆s

∣∣∣∣
0

≤ B1

n∑
k=1

∫ δω+(t)

t
|bk(s)fk(s, x(τ(s)), (Φx)(s))|∆s

≤ B1B
M |f(s, x(τ(s)), (Φx)(s))|0

≤ B1(f
∞ + ε)∥x∥

< ∥x∥. (10)
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Take kc1 = {x|x ∈ K, ∥x∥ ≤ c1}, then the set
kc1 is a bounded set. According to that H is com-
pletely continuous, then H maps bounded sets into
bounded sets and there exists a number c2 such that

∥Hx∥ ≤ c2, ∀x ∈ kc1 .

If c2 ≤ c1, we deduce that H : kc1 → kc1 is com-
pletely continuous. If c2 < c1, then from (10), we
know that for any x ∈ kc2\kc1 and ∥Hx∥ < ∥x∥ < c2
hold. Thus we haveH : kc2 → kc2 is completely con-
tinuous. Now, take c = max{c1, c2}, then c > b, so
H : kc → kc is completely continuous.

Denote the positive continuous concave func-
tional α(x) as α(x) = inf

t∈[t0,δω+(t0)]T
|x(t)|0. Firstly, let

a = ξb and take x ≡ a+b
2 , x ∈ K(α, a, b), α(x) > a,

then the set {x ∈ K(α, a, b)} ̸= ∅. By (ii), if
x ∈ K(α, a, b), then α(x) ≥ a, and we have

α(Hx)

= inf
t∈[t0,δω+(t0)]T

|(Hx)(t)|0

= inf
t∈[t0,δω+(t0)]T

∣∣∣∣ ∫ δω+(t)

t
G(t, s)b(s)

×f(s, x(τ(s)), (Φx)(s))∆s
∣∣∣∣

≥ A1

n∑
k=1

∫ δω+(t)

t
|bk(s)fk(s, x(τ(s)), (Φx)(s))|∆s

≥ A1B
m|f(s, x(τ(s)), (Φx)(s))|0

≥ A1B
mfb

> A1
ξb

A1
= a.

Hence condition (1) of Lemma 15 holds.
Secondly, by the condition f0 < 1

B1
of (i), one

can find that for

0 < ε <
1

B1
− f0,

there exists a d (0 < d < a) such that

|f(s, u,Φu)|0 ≤
f0 + ε

BM
∥u∥,

where 0 ≤ ∥u∥ ≤ d. If x ∈ Kd = {x|∥x∥ ≤ d}, we
have

|(Hx)(t)|0

=

∣∣∣∣ ∫ δω+(t)

t
G(t, s)b(s)f(s, x(τ(s)), (Φx)(s))∆s

∣∣∣∣
0

≤ B1

n∑
k=1

∫ δω+(t)

t
|bk(s)fk(s, x(τ(s)), (Φx)(s))|∆s

≤ B1B
M |f(s, x(τ(s)), (Φx)(s))|0

≤ B1(f
0 + ε)∥x∥

< ∥x∥ ≤ d, (11)

that is, condition (2) of Lemma 15 holds.
Finally, if x ∈ K(α, a, c) with ∥Hx∥ > b, by the

definition of the cone K, we have

α(Hx) = inf
t∈[t0,δω+(t0)]T

|(Hx)(t)|0

≥ inf
t∈[t0,δω+(t0)]T

ξ∥Hx∥ > ξb = a,

which implies that condition (3) of Lemma 15 holds.
To sum up, all conditions in Lemma 15 hold. By

Lemma 15, the operator H has at least three fixed
point in Kc. Therefore, system (1) has at least three
positive ω-periodic solutions in shifts δ±, and

x1 ∈ Kd, x2 ∈ {x ∈ K(α, a, c), α(x) > a},
x3 ∈ Kc \ α(K(α, a, c) ∪Kd).

This completes the proof.

Corollary 17. Using the following

(i∗) f0 = 0, f∞ = 0;

instead of (i) in Theorem 16, the conclusion of Theo-
rem 16 remains true.

4 Numerical Examples
Consider the following system with feedback control
on time scales{
x∆(t) = A(t)x(t) + b(t)f(t, x(τ(t)), u(t)),
u∆(t) = −r(t)u(t) + g(t)x(t), t ∈ T, (12)

then system (12) is equivalent to that of the following
system

x∆(t) = A(t)x(t) + b(t)f(t, x(τ(t)), (Φx)(t)), (13)

where Φ is defined in (4).

Example 18. Let

A(t) =

[
−1.5 1
1 −1.5

]
,

b(t) = diag(1− 0.5 sin 4πt, 1− 0.5 sin 4πt),

f(t, x(τ(t)), (Φx)(t))

=

[
|x(t)|0(0.05− 0.03| sin 2πt|)

(|x(t)|0)2e−0.01|x(t)|0

]
in system (13), where |x(t)|0 = |x1(t)|+|x2(t)|. Then

eA(t, t0) = e−0.5(t, t0)

[
1 0
0 1

]
+e−0.5(t, t0)

∫ t

t0

1

1− 2.5µ(s)
∆s

[
−2 1
1 −2

]
.
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Case I: T = R, and ω = 0.5. Let t0 = 0,
then δω+(t) = t + 0.5. It is easy to verify A(t), b(t),
f(t, x,Φx) satisfy

A(δω+(t))δ
∆ω
+ (t) = A(t), b(δω+(t))δ

∆ω
+ (t) = b(t),

f(δω+(t), x,Φx) = f(t, x,Φx), ∀t ∈ T∗,

and A ∈ R. By a direct calculation, we can get

eA(t, s) = e−0.5(t−s)
[
1− 2(t− s) (t− s)

(t− s) 1− 2(t− s)

]
,

G(t, s) = (eA(0, 0.5)− I)−1eA(t, s)

= e−0.5(t−s)
[
0.7662− 1.2187(t− s)
0.3137 + 0.1388(t− s)

0.3137 + 0.1388(t− s)
0.7662− 1.2187(t− s)

]
.

Since s ∈ [t, δω+(t)]T = [t, t+0.5], t− s ∈ [−0.5, 0].
Then

A1 = 1.0779, B1 = 2.0800, ξ = 0.5192, Bm = 0.5.

From the above, we can see that conditions (P1) and
(P2) hold.

Let b = 10, then

(i) f0 = 0.16 < 0.4808 = 1
B1

, f∞ = 0.08 <

0.4808 = 1
B1

;

(ii) Bmfb = 12.8274 > 4.8080 = ξb
A1

for 5.1920 ≤
|x|0 ≤ 10, t ∈ T.

According to Theorem 16, when T = R, system
(12) exists at least three positive ω-periodic solutions
in shifts δ±.

Case 2: T = Z, and ω = 0.5. Let t0 = 0,
then δω+(t) = t + 0.5. It is easy to verify A(t), b(t),
f(t, x,Φx) satisfy

A(δω+(t))δ
∆ω
+ (t) = A(t), b(δω+(t))δ

∆ω
+ (t) = b(t),

f(δω+(t), x,Φx) = f(t, x,Φx), ∀t ∈ T∗,

and A ∈ R. By a direct calculation, we can get

eA(t, s) =

(
1

2

)(t−s)
[
1− 4(t−s)

3
2(t−s)

3
2(t−s)

3 1− 4(t−s)
3

]
,

G(t, s) =
(
eA(0, ω)− I

)−1
eA(t, s)(I +A)−1

=

(
1

2

)(t−s) [
0.9468− 0.3882(t− s)
1.3114− 1.1174(t− s)

1.3114− 1.1174(t− s)
0.9468− 0.3882(t− s)

]
,

Since s ∈ [t, δω+(t)]T = [t, t+0.5], t− s ∈ [−0.5, 0].
Then

A1 = 2.2582, B1 = 4.2582, ξ = 0.5303, Bm = 0.5.

From the above, we can see that conditions (P1) and
(P2) hold.

Let b = 10, then

(i) f0 = 0.16 < 0.2348 = 1
B1

, f∞ = 0.08 <

0.2348 = 1
B1

;

(ii) Bmfb = 13.4673 > 2.3488 = ξb
A1

for 5.3030 ≤
|x|0 ≤ 10, t ∈ T.

According to Theorem 16, when T = Z, system
(12) exists at least three positive ω-periodic solutions
in shifts δ±.

Example 19. Let

A(t) =

[
− 1

5t 0
0 − 1

6t

]
, b(t) =

1

2t
,

f(t, x(τ(t)), (Φx)(t))

=

[
|x(t)|0(0.15− 0.05| sin 2πt|)

(|x(t)|0)2e−0.01|x(t)|0

]
in system (13), where |x(t)|0 = |x1(t)|+ |x2(t)|.

Let T = 2N0 , t0 = 1, ω = 4, then δω+(t) = 4t. It
is easy to verify A(t), b(t), f(t, x,Φx) satisfy

A(δω+(t))δ
∆ω
+ (t) = A(t), b(δω+(t))δ

∆ω
+ (t) = b(t),

f(δω+(t), x,Φx) = f(t, x,Φx), ∀t ∈ T∗,

and A ∈ R+. By a direct calculation, we can get

eA(t, s) =

[
ea11(t, s) 0

0 ea22(t, s),

]
,

a11(t) = − 1

5t
, a22(t) = − 1

6t
,

G(t, s) =
(
eA(1, 4)− I

)−1
eA(t, s)(I + µ(t)A)−1

=

[
15
13ea11(t, s) 0

0 3
2ea22(t, s)

]
.

Since 1+µ(t)a11(t) = 4
5 > 0, 1+µ(t)a22(t) =

5
6 >

0, then ea11(t, s) > 0, ea22(t, s) > 0, ∀s ∈ [t, δω+(t)]T.
Moreover, we have

A1 = 2.4038, B1 = 2.7, ξ = 0.8903, Bm = 1.

From the above, we can see that conditions (P1) and
(P2) hold.

Let b = 10, then
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(i) f0 = 0.3 < 0.3504 = 1
B1

, f∞ = 0.2 <

0.3704 = 1
B1

;

(ii) Bmfb = 36.4784 > 3.7036 = ξb
A1

for 8.9030 ≤
|x|0 ≤ 10, t ∈ T.

According to Theorem 16, when T = 2N0 , system
(12) exists at least three positive ω-periodic solutions
in shifts δ±.

Remark 20. From examples 18 and 19, we can see
that the results obtained in this paper can be applied
to systems on more general time scales, not only time
scales are unbounded above and below.

Remark 21. In system (12), if A(t) is a diagonal ma-
trix, a similar calculation in example 2 shows that
Gij = Gji = 0, Eij = Eji = 0, i ̸= j, the con-
dition (P4) in [14] cannot be satisfied. So the main
results in [24] cannot ensure the existence of positive
periodic solution of system (12) with A(t) is a diago-
nal matrix. Therefore, our main results improve and
generalize the results in [24].

5 Conclusion
This paper studied the existence and multiplicity of
positive solutions in shifts δ± for a class of higher-
dimensional functional dynamic equations with feed-
back control on time scales using the cone theory tech-
niques. The results obtained in this paper improve and
generalize the results in [24]. Besides, the methods
used in this paper can be applied to study many other
dynamic systems.
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