Issue 1, Volume 1, 2007 5

A New Paradigm for the Computational Complexity Analysis of
Algorithms and Functions

Ahmed Tarek

Abstract—There exists a variety of techniques for the computds not a function, and it is aet Existing literature streamlines
tional complexity analysis of algorithms and functions. This analysigultiple techniques for analyzing the notational complexities.

is foundational to the algorithmic and the functional performanceyqvever. th meth re n neral. and m li
Asides from the big-oh complexity, there are other complexit owever, these methods are not general, and may be applied

notations, such aQ, ©, smallo andsmallw notational complexities. any to a I'_m'ted clas_s of algorlth_ms and funct_lons. As a
Complexity analysis is used to select an appropriate algorithm fe@sult, @ unified paradigm for the big-oh complexity becomes
solving a given problem using computer. Unfortunately, most of tr@most impossible. Some of these diverse techniques are rather

prevailing approaches lack in simplicity, and consistency. Existingjfficult to understand and hard to realize in practice. In this

techniques are complex, and rather hard to realize in practice. Th %er an extended framework for the generalized analysis
is a trend to exploit the notational complexities in the existini '

literature by treating those as functions instead of sets. In this pa| 1Er, algorithms, functions, and the complexity expressions is

notational complexities and their applications paradigms are studigeesented. The proposed paradigm may as well be applied to
from the new perspectives. Simplified and consistent approaches farections involving multiple variables as well.
introduced that will make the analysis even simpler and easy toBjg-oh complexity provides with an estimate of the upper

understand. Abused notational complexities are analyzed through Hlﬁmd on the computational resources required to implement
appropriate approach. Also, the paradigm introduced is extended_to

algorithms and functions involving multiple input variables. the algorithm. On the other han@, estimate provides with an
K deTi c lexity. S Comblexity. C lexit idea of the minimum computational resources requirements.
eywords— lime omplexity, pace ompiexity, omplexity _ .
Function, Notational Complexity, Complexity Paradigm, AlgorithmBlg oh C,Omp'ex'ty may be combined W'th the-notational
Analysis. complexity to express both of these using a comntén
notation. ©-notational complexity provides with a general
estimate of the computational resources requirements. Other

. . INTRODUCTION notational complexities, their significance and applications are
The time taken by an algorithm largely depends on the harglyo discussed. These amall o-notationalandw notational

ware architecture (processor model, computer organizatigBmplexities. The essential difference among notions for ex-
etc.), and also on the software configuration (the operatigessing the complexity are also considered. A part of the
system, the particular compiler used, etc.) that are usedd@aiytical tools and techniques are based on the set theoretic
implement the algorithm. Therefore, the actual number of theyms and notations.
CPU cycles used is not required for analyzing the algorithm. |, section 77, terminology and notations are discussed
Notational complexities are independent of hardware apgefly Section 777 explores the basic steps involved in
software architectures used for the implementation. Howevﬁbplying the paradigm. Sectiofl” discusses application of
the cpnstant coefficients in the expressions for the complexjfys proposed paradigm to multi-variable functions. Section
function, f(n) or f(ni,ns,...,n,) depend on the hardware.,nsigers the paradigm with fractional expressions. Related
and the software characteristics used for the implemenig,mples are also considered. Sectibhexplores application
tion. Either g(n) or g(ni,ns,...,n,y), which depends on 4 the paradigm to addition, multiplication and division of
the number of independent variables used in the notatiofgh tions. Sectiori/I1 provides with a detailed guideline on
complexities, is free from the constant coefficients; thereforg,q structured complexity analysis. SectigiI considers an
the notational complexities are independent of hardware agflrithm with the proposed paradigm to illustrate the para-
software characteristics used for the implementation. digm. Section/ X is the set theoretic approach to complexity
With new algorithms, time and space complexity analysigya|ysis. Other notational complexities are also considered.
are imperative to show improvements over the existing teC8ectionx uses the paradigm in the space complexity analysis.
niques and to establish their usefulness. Regardless of hgWjateq examples are also considered. Sectidrexplores fu-

fast computers become or how cheap memory gets, efficiengye research avenues in Numerical Algorithms and Operations
will always remain as an important decision factor [BJg- Research using the paradigm.

oh notation provides an estimate on the upper-bound of an
algorithm or a function. In literature, the big-oh complexity is
often confused to be a function. In fact, the big-oh complexity [I. TERMINOLOGY AND NOTATIONS

In this paper, following notations are used.

. This work was supported by the California University’?- Inpu.t Size. . .)
of Pennsylvania. g(n): Highest order term in the expression for the complexity
Ahmed Tarek is affiliated with the Department of Math and Computey,nction without coefficients.
Science at California University of Pennsylvanizbo University Avenue,
California, Pennsylvania5419, USA (phone: (24) 938-4127; fax: (r24) J(n): Complexity function for a problem with the input size,

938-5972; e-mail: tarek@cup.edu) n.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Issue 1, Volume 1, 2007 6

f(ny,n9,...,ny): Complexity function involvingn indepen- ~ Example 2: Consider a logarithmic function with a nested
dent variables. Heren is an integer, anan = 2,3, structure within the expression fgi(z):

f(n): Complexity function derived by eliminating the constanf(z) = (23 + 2z)logs(z*+22) = 2310gs (x4 +22) + 2zlogs(z*+
coefficients fromf(n). 2x). Removing the constant coefficients, thedified complex-
f(ni,na, ... ,nm): Efficiency function obtained by removingity function, f(z) is, 23logs(z* + 22) + zlogs(z* + 2z). The
the constant coefficients fropfi(ny, na, ..., 7). highest order term in this expressionis]og,(z*+2x). Now,
g(n1,na, ..., ny): Highest order term inf(ny, na, ..., nm). loga(z? + 22) is a function of h(z) = (z* + 2z). Removing
O(g(n)): Big-oh complexity with the problem size,. constant coefficients, the modified functi(fr(m) is, (@* +).
O(g(n1,na,...,nmy)): Big-oh complexity for an algorithm or The highest-ordered term ilﬁ(x) is z%. Therefore, g(x)

a function involvingm independent parameters. Here,= =23log.(z*) = 423log(x). Removing the constant coefficient,
2,3,.... 4, the refinedy(z) is, g-(x) = 23loga(x). Hence, the complexity

The big-oh complexity has been defined in the literature [byder of f(z) is, O(g,(z)), which is O(z3log,x).
as:

If f and g are functions on the size of a problem or the IV. BIG-OH COMPLEXITY FOR MULTI-VARIABLE

set of parameterg, no, ..., n.,, m = 1,2,... involved, then FUNCTIONS AND ALGORITHMS

f(n)is O(g(n)), or f(n1,na,...,nw)iSO(g(n1,n2, ..., Nm)) With some computational algorithms, input depends on two
provided that there exists constans and k such that: or more variables. For example, when the input to an algorithm
|f(n)] < Clg(n)], whenevem > k is a graph, we often measure the size of the input in terms of
or |f(ni,n2,...,nm)| < Clg(ni,na,...,ny)|, whenever both the number of verticed; and the number of edge%;
each ofny,na,...,n, > k. Here,k is an integer representingusing a two dimensional matrix. Here, the input size considers

the threshold valudor the big-oh notational analysis to holdboth the parameterg and E. For determining the complexity
true. Following hierarchical relationship forms a basis foof multi-variable functions, use the following steps.

determining the order of complexity as outlined in [3]. Step 1: Determine the complexity functiofi(ny, ns, . . ., nm),

logan < n < nlogan < n? <n® < ...<nf <2" <C* < m=1,2,---involving multiple variables.

n! Step 2: Remove constant coefficients to obtain timedified
complexity function.f(ni,ns,...,nm), m = 1,2,---. This
includes any nested function insig€ny,ns,...,n,), m =

I11. AN EXTENDED PARADIGM FOR BIG-OH

) : . . 2,3,
ityFollowmg steps applies to determining thig-oh complex- Step3: Find out the highest order term if(n1, na, . . ., y),
R))) m = 2,3,---, and express it asg(ni,n2,...,Nym), M =
Step 1: Find out the complexity functiorf(n) on the input 2.3,.... The highest order term if(ny,na, ..., np), m —
sizén. 2,3,--- is the term with the cumulative highest total power

Step 2: Remove all coefficients of the terms if(n) and

. e . e for all the variables involved. If there are nested functions in
obtain themodified complexity functionf(rn). If necessary,

also expand and consider thested functiongif any) within 7{5”17:”2 ’1'7'2'”.7?7.")i'sthgglgﬁleZngissé%&{rﬁ(t?ﬁénir’]é' ' E:Z:s?t’ant
the expression fof(n)_. o . coefficients and considering also the nested expression in
Step 3: Find out the highest orde_r term yf(n),an_d express it g(n1,ma, ..., np), m = 2,3,.--. Therefore, the initial
asg(n). If there are nested functions jf{n), the final expres- g(n1, o, nm), m = 2,3,--- needs to be completely

sion for g(n) is obtained by expanding the nested functiong,anded, and refined in obtaining the final expression.
eliminating the constant coefficients, and then finally refiningtep 4 The big-oh notational complexity is

the initial expression fog(n). O(g(n1,nz, - - ., 1m)).

Step 4: Big-oh notational complexity isQ(g(12)). . Next the above steps are applied to a polynomial
The above steps are applied to the general polynomial fuRgnction involving % variables. The polynomial function,
tion, f(n) = axn® + ar—1n* =D + . +ain + ag; hereay # 0, f(n1,n9,...,n,) with k different variables is expressed by,
k=0,1,2,... andag,ar_1,...,aq are constant coefficients.f(nhn% my) = ajnyl‘ln%a nik " aj_lnyl‘l—lngz B .nik
Applying the 2nd step and removing all constant coefficients aj_Qnal'lngrl - nik + .+ annd. . ny + ao, herea;
from f(n), the modified complexity functionf (n) = n* + # 0, 4,71.92,--,Jm = 0,1,2,..., and aj,a;_1,...,a9 are

n= 4+ + 1, wherek is a nonnegative integer, and= ,nstant coefficients. In the total POWEH + jo +. . .+ jr — 1),
0,1,2,.... Using steg, g(n) = n*, k=0,1,2,.... Therefore, ihere arek possible terms; for the powéy; +ja+. . .+jx —2),
the complexity order off(n) is, O(n"). there are £ + C(k, 2)) possible terms; fofj +ja+. . .+ jx —
Example 1:Applying the above procedural steps to thg)’ there are k + C(k,2) + C(k, 3)) different terms; ..., for
arithmetic progressiont? + 2% + ... +m? (herem replaces e total powerl, there arek+C(k, 2) +C(k, 3)+ C(k, 4) +
n in the general model). Nowf(m) =12 + 2%+ ... +m® = | 4 o(k, 1 —1)) possible terms. Here;(k, j) is the number

m(m+1)2m+1) _ 1 3 1 2 1 2 1 - . . .
. 6, .3 Xm? g Xm® g xm® g X m = of ways to selecy different terms out ok given terms. This

6
3 1 2 1 : e . . o G : . ; ;
3 XM°* g xXm® + g xm. Rem.ovn)g the cognstan2t coefficientsis trye, since both?! ~'nd? U ndt, and nfi 20l L nik
the modified complexity functionf(m) = m” + m* +m. The provides with a total power ofj; + jo + ... + ji — 2). But
highest order term irf (m) is, m®. Thereforeg(m) =m® and for the total power(j; + jz + ... + jx), and0, there is only

f(m) € O(m?). one term that corresponds to each one of these two different

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Issue 1, Volume 1, 2007 7
powers. Therefore, indey, = [1 + 1+ k + (k+ 2*=Dy + . = g1(n)x gi2(n) = n® x nlog(n) = nlog(n), and fo(n)
b (kg HED | RSD02) K0 20k kR Y] = oy (n)x daa(n)=n X n2log(n) = n®log(n). Henceg(n) =

11

Hence, the indexj needs to have a valu(e V)VhICh i? [Zsﬁzggzg = 1. Therefore, the big-oh complexity i§)(1), which

(k—1) x C(k,1) + (k—2) x C(k,2) + ... + (k — k + is a constant complexity.

1) x Ck,k — 1)], or [2 + k(k — 1) + BE=UEZ2) " Next consider fractional expressions with multiple

+1 % ’“(’“*1>(’f*(i)~1-§k*’“+1+1] This is true, sinceC(k,j) Vvariables. Suppose that the fractional time complexity

— k(k—1)(k— 2) (k—j+1) . where j! is the factorial of j. Ap- function, f(ny,nz,...,nx), k = 2,3,--- contains the
numerator as fii(ny,no,...,ng)fia(ng, no, ..., nk)

plying Step2 from the above and eliminating the constant

coefficients, the modified complexity function is given bydenom{;t(onrhbn(j’“ o) ko= 2,3, Let the
f(nl,n%“ nk)_nnnéz Tt oo n {QI(Zlani...,271]??)..]0.2?(7118,712,;..,qk)2><....'.
nfrtnke e Lt nne.ng t. +n1ng...nk 281701, 752y o o5 Tok L . 2

_ ; Determine the modified complexity functions
+1,4,51,92,-- -,k = 0,1,2,.... Therefore, the highest order .

. i1 s i . “for both the numerator, and the denominator
term is, g(n1,n2,...,n) = ni'ny’ ...n;". The complexity separately as f (n1,m n)f (ny.n)
order of, f(ni,na,...,ny) involving & different variables is, Fotn o Hn)1’ Q’k"’ RJJ12U Q’é'é’ k
O(njl]2.“]k) 1r\TeL, 7025« - o5 TPk)y ; — 39y "

Example 3:Consider the functionf(z, y) = (z + zy + '}mzn o " {21(21’712’ e ’2n§)f22(n18’ n2; .- ’q’“);
2s\I1, 1825 -« -5 10K), = sy Iy Ty = sy &yt Ty

xlog(y))® involving 2 variablesz and y. Now f(z, y) =
(@ + zy + alog(y))® = (@ + xy + alog(y))x(z* + zy +
xlog(y))x (z? +2y+xlog(y)). The highest order term in each

respectively. From the modified complexity functions,
the highest order terms in the numerator and also in the

of the 3 expressions in the multiplication is;y. Therefore, derzzm:ator na;i’ g1(n1,n2,...,(Zk);gn(m,n;, o ’Zﬁzj
g1(z,y) = g2(x,y) = gs(x,y) = xzy. The highest ordered zlin 17” 27“"n k)_g (nn 9177-1)hg 2’(n’nnk ’ nE) X

f H 1 H 2 1,782y -« oy Tm)—YH21 1,702y« TlE 22 1,702y ¢ oy TlE
term in the expression fof(x, y) that contains both: and Gou(nr. M. 1), ke = 2.3, -, respectively. Therefore,

y (because in analyzing the big-oh notational complexny,'ﬁ n) - 911(”17"27 ,nk)x g1r (.m0, m)
if possible, it is more meaningful to show the effects 71’2 ?2)"‘ Tﬁe complexit. orrlé’g?’sélk X925 (n1,m2, - ;
all the variables involved) iszy x zy x zy = 7y, AS Exérﬁ le 6: Con3|depr)((Iy) |:1vol(g|(r7111,t712ree dlrfber)ent
log(y) < y and the total combined power afandy in ;3 P f, v, 2 ving,
ariables asf(z, y, z) = E ATyt 172")@ by +2") There.
is, 3+ 3) = 6. This6 is the highest combined power possmlé/ Y 2 e 2+ﬂcu+y2 @ty +=2)
in the expression forf(x, y). Hence, the big-oh notationalfore, fi(z, y, 2) = (¢* + 2%y + y° + y*2)(»T +y+2%),
complexity is,O(z3y?). and fa(z, y, 2) = (¢° + 2y + y2*)(z +y + 2%). Eliminating
the constant coefficients both ifi(z, y, 2), and in fa(z,
V. BiG-OH COMPLEXITY FOR FRACTIONAL EXPRESSIONS ¥ 2): the mOd'f'ed ;:oZmpIexny functions ardj (z, y, 2) =
For the fractional expressions, following are the require@ +a?y + 1/ + Yz)(I +y+2°), and fo(x, y, 2) =
steps. (22 + 2y + y2?)(z +y + 22), respectively. Therefore}u(x

Step 1: Obtain expression for the fractional time complexny/) = y*2%, and gia(z, y, 2) = 2* Also, 921((9UZ %J(”
function, f(n). Suppose the numerator if(n) is, fi(n), and 2°y"2% gaa(z, y, 2) = 2%, Finally, g(z, y, 2) = ;/7)@2) =
3.5

the denominator isfa(n). o Y% = y?z. Hence, the big-oh notational complexity(y*z)
Step2: Remove the coefficients frorfi (n) and obtain f (n). X mdependent of. The computational resources requirement
This may include any nested function ifi(r). Similarly, will be independent of:.
obtain f5(n) from f,(n) by removing the constant coefficients. From the above analysis, following result is true.
Step 3: Find out the highest order ter_m yh_(rf), and express Proposition 7:1f f(n) is O(g11(n)g12(n). . .91,(n)),
it as, g1(n). If there are nested functions itf; (), the final and h(n) is, O(g21(n)gez(n)...g2s(n))), then i(zg is,
expression forg;(n) is obtained by eliminating any constana g11(n)g12(n).. glr(n)

ici i i (M) g22(n)
coefficient after expanding the n.eet.ed functlon and throu Sof: gl%zollows dlrectly from the four procedural steps in
a complete refinement from the initial expression §o(n).

L .) i’ determining the big-oh notational complexity for fractional
$|m|IarIy, f'nd_ out the highest order ter{g)m(”)- and eXPreSS expressions as described before under this section. O
it as, g2(n). Finally, find out the ra’uogl and denote it by,

1 (’I’L)’
g(n). VI. B1G-OH COMPLEXITY FOR ADDITION AND
Step 4: The big-oh time complexny ISO(g(n)) MULTIPLICATION
Example 4:Considerf(n) = 5=In=4n’—2n Hare £ (n) = ; ;
37— ontd 1 In this section, the proposed framework has been extended

5—Tn® —4n® — 2n, and fo(n) = 3n* — 9n + 4. Therefore, {5 the addition and the multiplication of functions. Suppose
fi(n) =1+n°+ 7+, andfa(n) = n® +n+ 1. The highest that £, (n) is O(g, (n)) or Olgn (m)gaa(n). . g1, (n)), and(n)

ordered term infy(n) is, Ql(n) n5 and that inf>(n) iS, is O(ga(n)) or O(gar(n)gas(n). . .gas(n))). It is required to

g2(n) = n*. Hence,g(n) = % = n®. The big-oh compIeX|ty find out the big-oh complexity of(f; + f2)(n), and also of

is O(n?). (f1f2)(n). Now, f1(n) is O(g1(n)). Therefore,f;(n) = K; x
Example 5:Considerf(n) = (74{;):4 +64:3:42:))((7?2l?ogg((72;721§2)' g1(n) + Lower Order Terms= K; x g11(n)gi2(n). . .g1-(n)

Here, f1(n) = (7+9n +4n® + 2n)(nlog(n) + n +2), and + Lower Order Terms Similarly, f2(n) = Ka x ga(n) +
fa(n) = (9n* — 6n3 + 4n)(n%log(n) + 4). Therefore,fi(n) Lower Order Terms= Ky x g21(n)g22(n). . .g2s(n). Therefore,

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Issue 1, Volume 1, 2007 8

(fi+ f2)(n) = fi(n) + fa(n) = K1 X g1(n) + K3 x go(n) Casel: At least two functions out of thg different functions,

+ Other Lower Ordered Terms frorfy (n) and f2(n). Three g, go, ..., g; are distinct. In that case, lg{n.,no, ..., ng)
cases may be possible: = max {gi(ni,n2,...,ng), ga(n1,n2,...,nL), ...,
(1) g1(n) > g2(n): In this case(fi + f2)(n) is O(¢g1(n)) or g;(n1,ne,...,ng)}. Therefore, f(ni,ng,...,nE) IS
O(g11(n)g12(n). . .g1-(n)). O(g(n1,n2,. .., ng)).

(2) g1(n) < g2(n): In this case(f1 + f2)(n) is, O(g2(n)) or Case 2: All functions g1, g2, ..., g; are the same. In
O(g21(n)goz(n). . .g2s(n)). that event, letg(ni,na,...,ng) = gi(ni,ne,...,ng) =
(8) g1(n) = g2(n) = g(n): In this case, g(n) = go(ni,n2,...,n5) = ... = gj(ni,ne,...,ng). Therefore,

g11(M)g12(n). . .g1-(n) = g21(n)g22(n). . .g2s(n)). (f1 + f2)(n) f(ni,n2,...,nk) = (K1 + Ko + ...+ Kj)g(n1,n2, ..., ng)
= fi(n) + fa(n) = (K1 + K3)(g(n)) + Other Lower Ordered + Lower Order Terms= Kg(ni,na,...,n,) + Lower
Terms fromf; (n) and fo(n), and(f1 + f2)(n) is O(g(n)) or Order Terms where K = K;,+Ks + ... + K;. Hence,

O(g11(n)g12(n). . .g1-(n)) or O(ga21(n)gaa(n)...gos(n)). This f(ni,ns,...,nk) € O(g(ni, na,...,ng)).

analysis may be extended to functions with multiple variables For multiplication, fny,na, ..., ng) =
as well. fl(nl,ng,...,nk) X fg(nl,ng,...,nk) X
Next consider the multiplication of functions. Now,x filni,ng,...,ng) = (Kigi(ni,ne,...,nE) +
(fifo)(n) = fi(n)fe(n) = (K1 x gi(n) + Lower Or- Lower Order Termp x (Ka2g92(n1,n2,...,n5) +
der Termyx(K2 x ga2(n) + Lower Order Terms = Lower Order Terms x...x (K;g;(ni,ne,...,ng)
K1 K5g1(n)g2(n) + Other Lower Order Terms in the product + Lower Order Termp = (KiK>...K;)
The modified complexity function is obtained by eliminatindg: (n1, na, ..., ng)xga(ni, no, ..., nK)x ... gj(n1, na,
the constant coefficients frorffy f2)(n). Since,(f1f2)(n) = ...,ng)) + Other Lower Order Terms re-
g1(n)gz2(n) + Remaining Lower Order Terms without Coeffisulting ~ from the multiplication The modified
cients therefore,(f1 f2)(n) is O(g1(n)g2(n)). complexity function is, f(ni,na,...,nk) =

Example 8:Consider f(n) = 5n21092(Z?:1 §) + (4n? + (91(n1,n2,. .., nk)ga(na, ne, ... ,ng). .. gj(n1, na, ..., ng))
Tloga(n). Denoten2logg(2?:1j) by fi(n), and (4n?> + + Lower Order Terms = (gig2...9;)(n1,n2,...,n%)
7)logan by fa(n). Therefore,f(n) = 5f1(n) + fa(n), which + Lower Order Terms Hence, g(ni,na,...,nx) =
is the summation of two individual functions. Nowf; (n) = (9192 -.-9;)(n1,n2,...,ng), and f(ni,ng,...,ng) is
n2l092(2?:1 §) = n2l092(%) = n2logg(§ +2). Again, O(g(n1,n2, ... ,nk))_or O((g192 - - .gj)(nl, na, ... nK))-
f2(n) = (4n2 + T)logan. Hence, f(n) is a product of two ~ Example 9:Consider the following function.
different functions. In this case, the product of the highest af{n1,n2,n3) = (0} + ninj + n3loga(ni + n3))(ni3"™ +
dered terms without any coefficients is2logsn. In fi(n), the n373)(n1n3 + niloga(n2)). In f(n1,n2,n3), there are mul-
product of the highest ordered terms without any coefficierfiglications of three different functions. These are,
is, nzlogg(%2 + 5). Therefore,g;(n) = n2log2(%2 + %), and fi(n1,m2,n3) = (nz + nlné;— n3loga(n3 + n3))
g2(n) = n2logyn. Now, f(n) = 5712l0gQ(%2 + %) + n?logan fa(n1,m2, n3) f (n13’;2 +nans)

+ Lower order terms The order oflog:(+ 2) is higher J3(n1, 12, 113) = (nang + nuloga(n2)) .

2 om The highest order term inf; without any co-efficient
than that ofiogyn. Hence,g_l(zn) > 92(n). I 10g2(%3 + 5) s g (ny,my,ms) = mynd (using the hierarchy in Section
the hr'gheif ordered term is°, and fr(f}) 'SnO(gl(n))'_ NOW. 5" o0 Terminology and Notations). Similarly, the highest
log2 (5 + 3) is @ function ofh(n) = 5 + 5. Removing the 5 qer term in fo(ny, no,n) IS, go(nr,no,ns) = 12372,
congtant coefﬁmepts in(n), the m0d|f|gd functlog lsh(n) and that in f3(ny, na,n3) is, g3(ni,na,n3) = nind. Com-
=n? + n. The h|g£1est ord2ered term in(n) 2|s, n=. UsiNg plexity of f(n1,ns2,n3) is O(g19293)(n1, N2, - - ., 1m)). But
casel, _f(n) IS, O(n” loga(n))’. WhICh2IS’O(n x 2loga(n))- (919293)(n1,n2, .. ., nm) = g1(n1,m2,n3) X ga(ni, n2, nz) X
Removing the constart, f(n) is, O(n*loga(n) ga(na,m2,ms) = (mand) x (n33"2) x (minf) = (nin3") x

Analysis for th_e mul'_upllcatlo_n of fun_ctlons can be extende ng) = ninin33"2. Hence,f(n1, na, ns) is, O(nining3n2).
to the functions involving multiple variables as well as to the | jiterature, there are three types of complexities. These
muItlp.I|cat|on of more than two functions, as discussed in thge pest caseworst caseand theaverage case complexities
following subsection. Big-oh complexity defines an algorithm’s upper-bound in

time and memory space requirements. Howetenotational
A. Addition And Multiplication Of Multi-variable Functions complexity defines the order of the minimum time and space
Here, complexity of the addition and the multiplication ofequirements to execute the algorithm. The average case

j different functionsfi, fa, ..., f;, each involvingk different complexity considers the effects of all possible cases including
variablesny, ns, ..., n; are considered. Herk = 2,3,.... the best and the worst cases as well.

Suppose that the highest ordered termgin fo, ..., f; are

g1, g2, ..., gj, respectively. For the addition of functions, VII. PRESCRIBEDGUIDELINES FOR THECOMPLEXITY
fny,na,...,ng) = filny,ng,...,ng) + fa(ny,ne,...,nk) ANALYSIS

+ ..+ filn,me,... ng) = Kigi(ni,no,...,ng) + Following are five common guidelines in determining the
Kaga(ni,na,...,ng) + ... + Kjgj(ni,na,...,ng) + Lower complexity function for a given algorithm or a piece of code.
Order Terms from all of thg different functionsThere are 1) Loops: The maximum running time of a loop is the
two possible cases. single running time of the statements within the loop

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

2)

3)

4)

Issue 1, Volume 1, 2007 9

including loop tests multiplied by the total number of
iterations. Consider the following:

for i =1ton in stepl do
m=m-++2

end for
Each execution of the loop takes a constaramount
of time. The loop executes different times. Therefore,
the time complexity function isf(n) = ¢ x n. A unit
storage is required to stofea unit to storer, and finally
a unit to storem. Therefore,3 memory units ot6 bytes
of fixed storage space is required, afidn) = 6.
Nested Loops:Loops within the loops are common in
practice. For nested loops, start at the innermost loop
and then analyze inside out. Total running time is the
product of the sizes for all the loops. As an example,
consider the following:

for i =1ton in stepl do
for j =1tonin stepl do
k=k+1
end for
end for

Here, an innefor loopis nested within an outdor loop.
For each execution of the outer for loop, the inner loop
executesn times. Outer loop also executestimes in
total. Suppose that the assignment statenfentk + 1
takes a constant timefor its execution. Therefore, the
time complexity functionf(n) = ¢ x n x n = cn?. We
needl memory unit to store, one to storej, one forn,
and finally one to storé. Altogether, we need memory
units or8 bytes, andfs(n) = 8 = constant.
Consecutive Statements:For consecutive statements,
find out expression for the total time in terms of the input
parameters for executing each individual statement, each
loop and each nested loop constructs. This provides the
time complexity function. For example, consider the
following statements.

p=pt+1

for i=1ton in stepl do

m=m+ 2
end for
for i =1ton in stepl do
for j =1tonin stepl do

5)

time required by the test, plus either the then part or the
else part time, whichever is the larger. As an example,
consider the following code:
if (z is equal toy) then
return false
else
{
for (m =0tom < n in stepl) do
if (m is equal toy) then
return false
end if
end for

}

end if

In this example, in the worst-case, both tiieand the
elseparts in the outeif-else structurewill be executed.
Let the time for thef testis cg. Within theelse structure,
the for loop will be executedn different times. If each
test condition within thefor loop takesc; and theif
condition checkakesc, amount of time, then the time
complexity function is,f(n) = ¢p + n x (¢1 +¢2). Here,
we need2 memory units odl bytes for storinge andy,

2 bytes for keeping the return address from the fifrst

2 bytes for storingn, 2 bytes for storingn, and finally,

2 bytes for saving the return address from the sedbnd
statement. Altogether, we will need {2 +2 + 2 + 2)

= 12 bytes of memory for storing this code segment,
which is a constant. Hence, in this cagg(n) = 12.
Logarithmic complexity: An algorithm is of logarith-
mic complexity if it takes a constant amount of time to
cut down the current problem size by a constant fraction
(usually by a fraction ofl). For instance, if it takes a
constant amount of time to cut down the current problem
size by a fraction o%, then the time complexity of the
algorithm is logarithmic, which ig)(log;, (n)). From the
properties of logarithmjogy, (n) = loga (n)x logk(2).
However, for a particulak, logx(2) is a constant. Hence,
whatever is the value of the constantthe complexity
order remains the same, which i€§)(log> (n)). An
example of such an algorithm is thignary search
algorithm Quite often, the binary search is used to find
a word inside a dictionary containing pages.

kE=k+1 VIIl. TIME COMPLEXITY ANALYSIS
end for Following trivial algorithm computes the power of a real
end for numberb.

In this example, the complexity functiorf,(n) = ¢y + procedure Power_R1 (bireal; n:positive integer)
1 XM+ ey XxnXn=cy+ein + con?. Here, g is the begin B R
time required by the assignment statement p+1, ¢; = 1.0
is the time required byin = m + 2, andc is the time ?of j - 1to n do
consumed by the stateme#t= k4 1. Only 1 memory y : Y b

unit is required to store each onefi, n, m, j andk.
Therefore, altogether, it requirésinteger memory units
or 12 bytes. Here fs(n) = 12.

Consider the complexity function for the above trivial

If-then-else statements: With the If-then-else state- function. Suppose that the first statement takeamount of
ments,the worst-case time complexity function is oftime to execute each time. If each execution of the for loop
paramount importance. The worst-case total time is thakesc, time, then the time complexity function ig(n) = c; +

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Issue 1, Volume 1, 2007 10

180000 T T T T T

nce. Thereforeg(n) = n, and the big-oh notational complexity
of the algorithm is,O(n). 160000 |
procedure Power_R2 (b:real; n:positive integer) 140000
begin
y:=1.0
j=n
while 5 > 0 do
begin
if j # 2*int(j/2) then {j is odd}
y ': y * b 40000
j= |nt(]/2) 20000 -
if j > 0 then . ‘ ‘ ‘ ‘ ‘
b = b * b 0 5 10 15 20 25

Base 2 logarithm of input, n (log2(n))
end

end

T

120000

T

100000

T

80000

Improvement Factor, |

60000

Fig. 1. The improvement factor, is plotted againstoga(n).

With the improved version, the number of times thhile

loop executes determines thiene-complexity functionfa(n). .)) .
It is same as the number of times the statemgnt int(%) is the set of functions that includes all such functlc_yf(gz)

executes. Assume that the first statement consumamount SUCh that,f(n) > ¢ x g(n) for n > no. Expressed using the
of time, the second statement consumgamount of time, and S€t theoretic notation, this fact becomég(n)) = { f(n)

each execution of the while loop takes amount of time on | /() = ¢ X g(n)}, n > no. Here, ¢ is a constant. This
the average. If the while loop executedlifferent times, then means,()(g(n)) is the set of all such f_unctlon$(n), such
2k = 1, (assumingn is an even power of), or k = loga(n). that f(n) > ¢ x g(n) for constantc. S_lm_|larly, O(g(n)) = _{
Therefore, fa(n) = ¢1 + ¢z + k x ¢3 = ¢1 + 3 + csloga(n). fn)] f(n) <ex g(n)}3 n > ng. This implies,O(g(n)) is
Hence,g(n) = logan, and the complexity isQ(logan). the set of all such functions such thatn) < ¢ x g(n) holds
Following table shows the relative improvement encouftU€ for @ constant, and beyonch > no. o

tered using the improved second version over the trivial first!f there is a function f(n) such that for any positive

version, expressed in the form of a ratio with the increasirf%f’nStantthc’ {(”)t_< ¢ xé](?)’ thte;ln f(n) € bO(g(le)i. E‘is .
oroblem size. eans the functiom(n) defines the upper bound to the se

of functionso(g(n)) for any positive constant,. This is true

TABLE | wheneverg(n) is a function with a higher complexity order
RELATIVE IMPROVEMENT IN PERFORMANCE FOR USING THE IMPROVED ~ compared t@ (g, (n)), such thatf(n) € O(gi(n)). Therefore,
ALGORITHMIC APPROACH, g1(n) < g(n). If there is a functionh(n) such that for any
positive constant, h(n) > ¢ x g(n), thenh(n) € w(g(n)).
v, Thus,g(n) will define the lower bound to the set of functions,
n Vi, Vi, I=y w(g(n)) for any positive constant,. This is only possible, if
510 - h(n) € O(k(n)), andg(n) < k(n). Hence,g(n) < k(n) is
,024 40 25.6 : . N
o2 1006 13 53 true for any lower order functiop(n) in the complexity hier-
51T 16,384 6 202.6 archy. If f(n) is a function ofr, and if there exists a positive
216 65, 536 64 1,024.0 constantc such thatf(n) > ¢ x g(n), then f(n) € Q(g(n)).
27| 262144 | 72 [3,640.9 Therefore,g(n) is the highest order function that defines the
2 1712’7%5’75’;?6 gg 1’134’1%'22.7 lower bound forf (n). Similarly, if f(n) € O(g(n)), theng(n)

is the lowest order function in the complexity hierarchy that
defines an upper bound fgf(n). If there are two different
Following depicts the improvement using a plotted curveonstantse¢; andcs, such thate; x g(n) < f(n) < ¢z x g(n),
encountered with the improved version over the trivial versiahen g(n) defines both the lowest order upper bound and the
for the increasing problem sizes. highest order lower bound. In that everftin) € O(g(n)).
From Fig.1, with the increasing problem sizes, the improveSince ¢; x g(n) < f(n), therefore,f(n) € Q(g(n)). Also
ment factor,/ increases at an extremely fast rate, dictating th&n) < cxg(n). Hence,f(n) € O(g(n)). From the definition
supremacy of the second algorithm over the first one witif the set intersectionf(n) € O(g(n)) N Q(g(n)). Finally,
larger problem instances. This characteristic is one of ti&g(n)) = O(g(n)) N Q(g(n)). This means that the set of
major deciding factors behind designing a new algorithm fanctions,©(g(n)) contains all such functions that lie at the
solve a problem. set intersection of the set of function®({g(n)) andQ(g(n)).

IX. SET THEORETICAPPROACH TOCOMPLEXITY X. SPACE COMPLEXITY ANALYSIS
The explanation forQ2, ©, w, and the smalb notational Storing data and programs occupy storage units or the main
complexities becomes quite simple and straight-forward usingemory space. Processing information also needs memory.
the set theoretic notions and notations. For instafie(n)) This is not the hard disk space, but the computational memory

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Issue 1, Volume 1, 2007 11

of the computer, which is the computer's RAM. Since thg, andn is, Sy =2+2+2 = 6.

computational memory is expensive, it is necessary that theThe variable space required (depending upon the supplied

programs consume as little memory as is possible, and cemlue ofn) is, S,(n) = 3 x n x n = 3n?. Hence, the total

sumes the optimum amount of it. Therefore, it is imperativepace requirement i§ = Sy + S, (n) = 6 + 3n?. Therefore,

to do the big-oh notational complexity analysis to find ou € O(n?). Recursive data structures have significant effect

the upper bound on memory space consumption, which also space complexity. This is due to the fact that a recursive

provides with an estimate on the required computationdata structure consumes a considerable amount of dynamic

memory overhead. storage area inside the computer’s recursive stack space, which
Consider an example. Suppose we want to write a prograsncounted as a component §f(n). For allocating dynamic

to compute the sum of a given list of numbers. The programemory using the keywordew inside the dynamic memory

goes into a loop for a predetermined number of iterationatea, it contributes directly t6,(n). Consider the following

which is equal to the size of the list, for examglgd or 200, program sample. The first version is iterative:

... etc., asking the user to enter a number, and keeps addimgplate<class T

these numbers. We would like to find the space complexity @f Sum (" q[], int n)

this algorithm. { I/ Return sum of numberg[0:n — 1].

There are three simple steps for determining the spatetsum =0;
complexity that one should follow: for(inti =0;i<mn;i++)
Step 1: Identify the parameter(s) that determine the problem tsum+ = ali);
size. return tsum;}
Step 2: Find out how much space (i.e. memory in bytes) iBor this algorithm, suppose that the first statement takes
needed for a particular size. amount of time, each execution of the for loop consumes
Step 3: Find out how much space (i.e. memory in bytes) ig, amount of time, and the last return statement requises
needed for twice the size considered earlier. amount of time. Thereforel'(n) = ¢; + n X ¢3 + ¢3. Hence,

Repeat ste many times until you establish a relationshif@’(n) € O(n). For the space complexit$s = 2+2+2+2+2 =
between the size of the problem, and the corresponding spaeand.S,(n) = 0. Therefore,S(n) = 10, and S(n) € O(1).
requirements. This relationship provides us with the spa@ée space-time bandwidth product §(n) € O(n), which
complexity to that program. Now, apply the above steps te linear. Next consider the following recursive version of the
the example stated above. same program.

The problem size is obviously the size, of the list of template<class T
numbers to be added. Assume that there is a listt@f 7" Rsum (" af], int n)
numbers. Obviously, a variable is required where the numbgr#/ Return sum of the numberg0: n — 1].
are to be entered (one at a time, may be from the keyboarnd)n > 0) return Rsumd¢, n — 1) + a[n — 1];
and a variable (initialized t@) where the current running return0; }
sum is to be kept. Thus, two distinct variables are requirér the recursive versiorif'(n) = ¢; X (n + 1) + ca x n
to compute the sum. Next consider a list 200 numbers + c¢3. This yields,T'(n) € O(n). Now the space complexity
(twice the size as before). Obviously, still only two variableBinction is, S(n) = S; + Sy(n) = 2 + © X n +2 X n.
are required. Next consider a list havid§0 numbers (twice Therefore,S(n) € O(n). Hence, the space-time bandwidth
as before). Still only two variables are required to stongroduct is,C(n) € O(n?). Thus, the computer requires more
the results. Hence, it is possible to conclude that no matmputational resources with the recursive implementation
how many numbers are added, always a constant numbercofmpared to the corresponding iterative version. This differ-
variables is required for the operations, thus the relationshkeépce is mainly due to the space complexity of the recursive
between the input problem size, and the space consumed @aga structure.
the space complexityof the program) is a constant. Hence, The principal factors contributing to the dynamic memory
the space complexity of the given algorithm i) € O(1). space consumptions are due to the building up of the recursive
Consider the following segment of code. It is required to finstack space and space consumptions within the dynamic
out the space complexity for the following code segment: memory area. There is an interesting relationship due to Knuth

int n; cin >> n; that relates the time complexity to the lower bound in space
int Al][] = new int[n][n]; int B[][] = new int[n][n]; int C[]] complexity (the minimum space requirement).
= new int[n|[n]; 4, J; Theorem 10:Any algorithm that takeg'(n) time must use
for (6 =0;i<n;i++) at leastlog(f(n)) space.
for (j=0;j7<n;j++) Example 11:Suppose that the time complexity of an al-
cin >> Cli][j] >> Bli][j]; gorithm is, O(n3(log(n))?). Therefore,f(n) = n®(log(n))?.
for 1 =0;i<n;i++) Hence, the algorithm requires at leagtg(n3(log(n))?)
for(j=0;7<n;j++) amount of memory space or more than that. However,
Ali)lj] = BI)l) + Cll); log(n® (log(n))?) = log(n®) + log(log(n))) = 3log(n) +

There are3 n x n matrix required to implement the above2log(log(n)). Now, log(n) > log(log(n)). Therefore,log(n)
code. The size of each matrix depends on the input gize provides a lower-bound on the space requirement for this
which is a variable. The fixed space requirement for stoijngalgorithm. Stated in another wa§(n) € Q(log(n)).

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Issue 1, Volume 1, 2007 12

X1. CONCLUSION

Complexity helps predict whether an algorithm will take
up prohibitive amount of computation time with the larger
input sizes for the problems. This is specifically true with the
exponential algorithms.

In this paper, a new paradigm for analyzing the compu-
tational complexity of algorithms and functions is presented.
A problem may have more than one solution with each one
expressed as a different algorithm. Therefore, it is necessary
to compare among the performance of algorithms. After
comparison, the user may select the one, that best fits his
computational needs. There are several factors that are required
to be considered in comparing among the algorithms. For
instance, algorithms may be compared based on the com-
putational elegance, clarity, ease of understanding, and the
computational resources requirements. But the computational
complexity particularly concentrates on the computational
resources requirements. The cost of a computation depends
on two major factors. One is determined by the technology
that has been used, and the other one is the actual technique
involved during the computation. The actual technique refers
to the manner in which the computation is carried out. Due
to the rapid technological advancements, it makes more sense
to compare algorithms on the basis of the costs associated
with their internal characteristics rather than the external
factors. With this objective on mind, discarding the constant
coefficients from the complexity function provides with the
modified complexity function.

In future, applications of the proposed paradigm in Numer-
ical Algorithms as well as in Operations Research will con-
sidered. Corresponding avenues of research will be explored
to identify further the unexplored new results.

REFERENCES

[1] Kenneth H. RosenPiscrete Mathematics and Its Applications, Fifth
Edition, McGraw-Hill, 2003

[2] Richard E. Neapolitan and Kumarss Naimipo&gundations of Al-
gorithms Using C++ Pseudocode, Third Editiodones and Bartlett
Publishers 2004

[3] Richard F. Gilberg and Behrouz A. Forouzabata Structures - A
Pseudocode Approach with C++Brooks/Cole, Thomson Learning,
2001

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

	Button10:
	Button11:

