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Abstract— There exists a variety of techniques for the computa-
tional complexity analysis of algorithms and functions. This analysis
is foundational to the algorithmic and the functional performance.
Asides from the big-oh complexity, there are other complexity
notations, such asΩ, Θ, smallo andsmallω notational complexities.
Complexity analysis is used to select an appropriate algorithm for
solving a given problem using computer. Unfortunately, most of the
prevailing approaches lack in simplicity, and consistency. Existing
techniques are complex, and rather hard to realize in practice. There
is a trend to exploit the notational complexities in the existing
literature by treating those as functions instead of sets. In this paper,
notational complexities and their applications paradigms are studied
from the new perspectives. Simplified and consistent approaches are
introduced that will make the analysis even simpler and easy to
understand. Abused notational complexities are analyzed through the
appropriate approach. Also, the paradigm introduced is extended to
algorithms and functions involving multiple input variables.

Keywords— Time Complexity, Space Complexity, Complexity
Function, Notational Complexity, Complexity Paradigm, Algorithm
Analysis.

I. I NTRODUCTION

The time taken by an algorithm largely depends on the hard-
ware architecture (processor model, computer organization,
etc.), and also on the software configuration (the operating
system, the particular compiler used, etc.) that are used to
implement the algorithm. Therefore, the actual number of the
CPU cycles used is not required for analyzing the algorithm.
Notational complexities are independent of hardware and
software architectures used for the implementation. However,
the constant coefficients in the expressions for the complexity
function, f (n) or f (n1, n2, . . . , nm) depend on the hardware
and the software characteristics used for the implementa-
tion. Either g(n) or g(n1, n2, . . . , nm), which depends on
the number of independent variables used in the notational
complexities, is free from the constant coefficients; therefore,
the notational complexities are independent of hardware and
software characteristics used for the implementation.

With new algorithms, time and space complexity analysis
are imperative to show improvements over the existing tech-
niques and to establish their usefulness. Regardless of how
fast computers become or how cheap memory gets, efficiency
will always remain as an important decision factor [2].Big-
oh notation provides an estimate on the upper-bound of an
algorithm or a function. In literature, the big-oh complexity is
often confused to be a function. In fact, the big-oh complexity
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is not a function, and it is aset. Existing literature streamlines
multiple techniques for analyzing the notational complexities.
However, these methods are not general, and may be applied
only to a limited class of algorithms and functions. As a
result, a unified paradigm for the big-oh complexity becomes
almost impossible. Some of these diverse techniques are rather
difficult to understand and hard to realize in practice. In this
paper, an extended framework for the generalized analysis
of algorithms, functions, and the complexity expressions is
presented. The proposed paradigm may as well be applied to
functions involving multiple variables as well.

Big-oh complexity provides with an estimate of the upper
bound on the computational resources required to implement
the algorithm. On the other hand,Ω estimate provides with an
idea of the minimum computational resources requirements.
Big-oh complexity may be combined with theΩ-notational
complexity to express both of these using a commonΘ-
notation. Θ-notational complexity provides with a general
estimate of the computational resources requirements. Other
notational complexities, their significance and applications are
also discussed. These aresmall o-notationalandω notational
complexities. The essential difference among notions for ex-
pressing the complexity are also considered. A part of the
analytical tools and techniques are based on the set theoretic
terms and notations.

In section II, terminology and notations are discussed
briefly. Section III explores the basic steps involved in
applying the paradigm. SectionIV discusses application of
the proposed paradigm to multi-variable functions. SectionV
considers the paradigm with fractional expressions. Related
examples are also considered. SectionV I explores application
of the paradigm to addition, multiplication and division of
functions. SectionV II provides with a detailed guideline on
the structured complexity analysis. SectionV III considers an
algorithm with the proposed paradigm to illustrate the para-
digm. SectionIX is the set theoretic approach to complexity
analysis. Other notational complexities are also considered.
SectionX uses the paradigm in the space complexity analysis.
Related examples are also considered. SectionXI explores fu-
ture research avenues in Numerical Algorithms and Operations
Research using the paradigm.

II. T ERMINOLOGY AND NOTATIONS

In this paper, following notations are used.
n: Input size.
g(n): Highest order term in the expression for the complexity
function without coefficients.
f (n): Complexity function for a problem with the input size,
n.
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f (n1, n2, . . . , nm): Complexity function involvingm indepen-
dent variables. Here,m is an integer, andm = 2, 3, . . ..
f́ (n): Complexity function derived by eliminating the constant
coefficients fromf (n).
f́ (n1, n2, . . . , nm): Efficiency function obtained by removing
the constant coefficients fromf (n1, n2, . . . , nm).
g(n1, n2, . . . , nm): Highest order term ińf (n1, n2, . . . , nm).
O(g(n)): Big-oh complexity with the problem size,n.
O(g(n1, n2, . . . , nm)): Big-oh complexity for an algorithm or
a function involvingm independent parameters. Here,m =
2, 3, . . ..
The big-oh complexity has been defined in the literature [1]
as:
If f and g are functions on the size of a problemn, or the
set of parametersn1, n2, . . . , nm, m = 1, 2, . . . involved, then
f (n) is O(g(n)), or f (n1, n2, . . . , nm) is O(g(n1, n2, . . . , nm))
provided that there exists constantsC, and k such that:
|f (n)| ≤ C|g(n)|, whenevern > k
or |f (n1, n2, . . . , nm)| ≤ C|g(n1, n2, . . . , nm)|, whenever
each ofn1, n2, . . . , nm > k. Here,k is an integer representing
the threshold valuefor the big-oh notational analysis to hold
true. Following hierarchical relationship forms a basis for
determining the order of complexity as outlined in [3].
log2n < n < nlog2n < n2 < n3 < . . . < nk < 2n < Cn <
n!

III. A N EXTENDED PARADIGM FOR BIG-OH

Following steps applies to determining thebig-oh complex-
ity.
Step 1: Find out the complexity functionf (n) on the input
sizen.
Step 2: Remove all coefficients of the terms inf (n) and
obtain themodified complexity function,́f(n). If necessary,
also expand and consider thenested functions(if any) within
the expression forf (n).
Step3: Find out the highest order term ińf(n), and express it
asg(n). If there are nested functions ińf(n), the final expres-
sion for g(n) is obtained by expanding the nested functions,
eliminating the constant coefficients, and then finally refining
the initial expression forg(n).
Step 4: Big-oh notational complexity is,O(g(n)).
The above steps are applied to the general polynomial func-
tion, f (n) = aknk + ak−1n

(k−1) + . . . + a1n + a0; hereak 6= 0,
k = 0, 1, 2, . . . andak, ak−1, . . . , a0 are constant coefficients.
Applying the2nd step and removing all constant coefficients
from f (n), the modified complexity function,́f(n) = nk +
n(k−1) + . . . + 1, wherek is a nonnegative integer, andk =
0, 1, 2, . . .. Using step3, g(n) = nk, k = 0, 1, 2, . . .. Therefore,
the complexity order off (n) is, O(nk).

Example 1:Applying the above procedural steps to the
arithmetic progression:12 + 22 + ... + m2 (herem replaces
n in the general model). Now,f (m) =12 + 22 + ... + m2 =
m(m+1)(2m+1)

6 = 1
3 × m3 + 1

3 × m2 + 1
6 × m2 + 1

6 × m =
1
3×m3 + 1

2×m2 + 1
6×m. Removing the constant coefficients,

the modified complexity function,́f(m) = m3 + m2 + m. The
highest order term ińf(m) is, m3. Therefore,g(m) = m3 and
f (m) ∈ O(m3).

Example 2:Consider a logarithmic function with a nested
structure within the expression forf (x):
f (x) = (x3 + 2x)log2(x4+2x) = x3log2(x4+2x) + 2xlog2(x4+
2x). Removing the constant coefficients, themodified complex-
ity function, f́(x) is, x3log2(x4 + 2x) + xlog2(x4 + 2x). The
highest order term in this expression is,x3log2(x4+2x). Now,
log2(x4 + 2x) is a function of,h(x) = (x4 + 2x). Removing
constant coefficients, the modified function,h́(x) is, (x4 +x).
The highest-ordered term ińh(x) is x4. Therefore, g(x)
=x3log2(x4) = 4x3log2(x). Removing the constant coefficient,
4, the refinedg(x) is, gr(x) = x3log2(x). Hence, the complexity
order off (x) is, O(gr(x)), which is O(x3log2x).

IV. B IG-OH COMPLEXITY FOR MULTI -VARIABLE

FUNCTIONS AND ALGORITHMS
With some computational algorithms, input depends on two

or more variables. For example, when the input to an algorithm
is a graph, we often measure the size of the input in terms of
both the number of vertices,V and the number of edges,E
using a two dimensional matrix. Here, the input size considers
both the parametersV andE. For determining the complexity
of multi-variable functions, use the following steps.
Step1: Determine the complexity functionf (n1, n2, . . . , nm),
m = 1, 2, · · · involving multiple variables.
Step 2: Remove constant coefficients to obtain themodified
complexity function,f́ (n1, n2, . . . , nm), m = 1, 2, · · ·. This
includes any nested function insidef (n1, n2, . . . , nm), m =
2, 3, · · ·.
Step 3: Find out the highest order term ińf (n1, n2, . . . , nm),
m = 2, 3, · · ·, and express it as,g(n1, n2, . . . , nm), m =
2, 3, · · ·. The highest order term ińf (n1, n2, . . . , nm), m =
2, 3, · · · is the term with the cumulative highest total power
for all the variables involved. If there are nested functions in
f́ (n1, n2, . . . , nm), the final expression forg(n1, n2, . . . , nm),
m = 1, 2, · · · is obtained by eliminating the constant
coefficients and considering also the nested expression in
g(n1, n2, . . . , nm), m = 2, 3, · · ·. Therefore, the initial
g(n1, n2, . . . , nm), m = 2, 3, · · · needs to be completely
expanded, and refined in obtaining the final expression.
Step 4: The big-oh notational complexity is,
O(g(n1, n2, . . . , nm)).

Next the above steps are applied to a polynomial
function involving k variables. The polynomial function,
f (n1, n2, . . . , nk) with k different variables is expressed by,
f (n1, n2, . . . , nk) = ajn

j1
1 nj2

2 . . . njk

k + aj−1n
j1−1
1 nj2

2 . . . njk

k

+ aj−2n
j1
1 nj2−1

2 . . . njk

k + . . . + a1n
0
1n

0
2 . . . nk + a0, hereaj

6= 0, j, j1, j2, . . . , jm = 0, 1, 2, . . ., and aj , aj−1, . . . , a0 are
constant coefficients. In the total power(j1+j2+. . .+jk−1),
there arek possible terms; for the power(j1+j2+. . .+jk−2),
there are (k + C(k, 2)) possible terms; for(j1+j2+ . . .+jk−
3), there are (k + C(k, 2) + C(k, 3)) different terms; . . . , for
the total power1, there are(k+C(k, 2)+C(k, 3)+C(k, 4)+
. . .+C(k, k−1)) possible terms. Here,C(k, j) is the number
of ways to selectj different terms out ofk given terms. This
is true, since bothnj1−1

1 nj2−1
2 . . . njk

k , and nj1−2
1 nj2

2 . . . njk

k

provides with a total power of,(j1 + j2 + . . . + jk − 2). But
for the total power,(j1 + j2 + . . . + jk), and0, there is only
one term that corresponds to each one of these two different
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powers. Therefore, index,j = [1 + 1 + k + (k + k(k−1)
2! ) + . . .

+ (k + k(k−1)
2! + k(k−1)(k−2)

3! + . . . + k(k−1)(k−2)...(k−k+1)
(k−1)! )].

Hence, the indexj needs to have a value, which is [2 +
(k − 1) × C(k, 1) + (k − 2) × C(k, 2) + . . . + (k − k +
1) × C(k, k − 1)], or [2 + k(k − 1) + k(k−1)(k−2)

2! + . . .

+ 1 × k(k−1)(k−2)...(k−k+1+1)
(k−1)! ]. This is true, sinceC(k, j)

= k(k−1)(k−2)...(k−j+1)
j! , where j! is the factorial of j. Ap-

plying Step2 from the above and eliminating the constant
coefficients, the modified complexity function is given by,
f́ (n1, n2, . . . , nk) = nj1

1 nj2
2 . . . njk

k + nk1−1
1 nk2

2 . . . njk

k + . . . +
nk1−1

1 nk2−1
2 . . . njk−1

k + . . . + n1n2 . . . nk + . . . + n0
1n

0
2 . . . nk

+ 1, j, j1, j2, . . . , jk = 0, 1, 2, . . .. Therefore, the highest order
term is, g(n1, n2, . . . , nk) = nj1

1 nj2
2 . . . njk

k . The complexity
order of,f (n1, n2, . . . , nk) involving k different variables is,
O(nj1

1 nj2
2 . . . njk

k ).
Example 3:Consider the functionf (x, y) = (x2 + xy +

xlog(y))3 involving 2 variablesx and y. Now f (x, y) =
(x2 + xy + xlog(y))3 = (x2 + xy + xlog(y))×(x2 + xy +
xlog(y))×(x2 +xy+xlog(y)). The highest order term in each
of the 3 expressions in the multiplication is,xy. Therefore,
g1(x, y) = g2(x, y) = g3(x, y) = xy. The highest ordered
term in the expression foŕf (x, y) that contains bothx and
y (because in analyzing the big-oh notational complexity,
if possible, it is more meaningful to show the effects of
all the variables involved) is,xy × xy × xy = x3y3. As,
log(y) < y and the total combined power ofx andy in x3y3

is, (3+3) = 6. This 6 is the highest combined power possible
in the expression forf́ (x, y). Hence, the big-oh notational
complexity is,O(x3y3).

V. B IG-OH COMPLEXITY FOR FRACTIONAL EXPRESSIONS
For the fractional expressions, following are the required

steps.
Step 1: Obtain expression for the fractional time complexity
function, f (n). Suppose the numerator inf (n) is, f1(n), and
the denominator is,f2(n).
Step2: Remove the coefficients fromf1(n) and obtain,f́1(n).
This may include any nested function inf1(n). Similarly,
obtainf́2(n) from f2(n) by removing the constant coefficients.
Step 3: Find out the highest order term ińf1(n), and express
it as, g1(n). If there are nested functions in,́f1(n), the final
expression forg1(n) is obtained by eliminating any constant
coefficient after expanding the nested function and through
a complete refinement from the initial expression forg1(n).
Similarly, find out the highest order term ińf2(n), and express
it as,g2(n). Finally, find out the ratio,g1(n)

g2(n) , and denote it by,
g(n).
Step 4: The big-oh time complexity is,O(g(n)).

Example 4:Considerf (n) = 5−7n5−4n3−2n
3n2−9n+4 . Here,f1(n) =

5 − 7n5 − 4n3 − 2n, andf2(n) = 3n2 − 9n + 4. Therefore,
f́1(n) = 1+n5 +n3 +n, andf́2(n) = n2 +n+1. The highest
ordered term inf́1(n) is, g1(n) = n5, and that inf́2(n) is,
g2(n) = n2. Hence,g(n) = n5

n2 = n3. The big-oh complexity
is O(n3).

Example 5:Considerf (n) = (7+9n5+4n3+2n)(nlog(n)+n+2)
(9n4−6n3+4n)(n2log(n)+4) .

Here,f1(n) = (7 + 9n5 + 4n3 + 2n)(nlog(n) + n + 2), and
f2(n) = (9n4 − 6n3 + 4n)(n2log(n) + 4). Therefore,f́1(n)

= ǵ11(n)× ǵ12(n) = n5 × nlog(n) = n6log(n), and f́2(n)
= ǵ21(n)× ǵ22(n)=n4×n2log(n) = n6log(n). Hence,g(n) =
n6log(n)
n6log(n) = 1. Therefore, the big-oh complexity is,O(1), which
is a constant complexity.

Next consider fractional expressions with multiple
variables. Suppose that the fractional time complexity
function, f (n1, n2, . . . , nk), k = 2, 3, · · · contains the
numerator as f11(n1, n2, . . . , nk)f12(n1, n2, . . . , nk)
× . . . f1r(n1, n2, . . . , nk), k = 2, 3, · · ·. Let the
denominator be:f21(n1, n2, . . . , nk)f22(n1, n2, . . . , nk)× . . .
f2s(n1, n2, . . . , nk), k = 2, 3, · · ·, s = 1, 2, · · ·.
Determine the modified complexity functions
for both the numerator, and the denominator
separately as, f́11(n1, n2, . . . , nk)f́12(n1, n2, . . . , nk)
× . . . f́1r(n1, n2, . . . , nk), k = 2, 3, · · ·,
and f́21(n1, n2, . . . , nk)f́22(n1, n2, . . . , nk)× . . .
f́2s(n1, n2, . . . , nk), k = 2, 3, · · ·, s = 1, 2, · · ·,
respectively. From the modified complexity functions,
the highest order terms in the numerator and also in the
denominator are, g1(n1, n2, . . . , nk)=g11(n1, n2, . . . , nk)
g12(n1, n2, . . . , nk)× . . . g1r(n1, n2, . . . , nk), and
g2(n1, n2, . . . , nm)=g21(n1, n2, . . . , nk) g22(n1, n2, . . . , nk)×
. . . g2s(n1, n2, . . . , nk), k = 2, 3, · · ·, respectively. Therefore,
g(n1, n2, . . . , nk) = g11(n1,n2,...,nk)×...g1r(n1,n2,...,nk)

g22(n1,n2,...,nk)×...g2s(n1,n2,...,nk) ,
k = 2, 3, · · ·. The complexity order is,O(g(n1, n2, . . . , nm)).

Example 6:Considerf (x, y, z) involving three different
variables as,f (x, y, z) = (x4+x2y+y3+y3z2)(x2+y+z3)

(x2+xy+yz2)(x+y+z2) . There-
fore, f1(x, y, z) = (x4 + x2y + y3 + y3z2)(x2 + y + z3),
and f2(x, y, z) = (x2 + xy + yz2)(x + y + z2). Eliminating
the constant coefficients both inf1(x, y, z), and in f2(x,
y, z), the modified complexity functions are,́f1(x, y, z) =
(x4 + x2y + y3 + y3z2)(x2 + y + z3), and f́2(x, y, z) =
(x2 + xy + yz2)(x + y + z2), respectively. Therefore,g11(x,
y, z) = y3z2, and g12(x, y, z) = z3 Also, g21(x, y, z) =
x0y1z2, g22(x, y, z) = z2. Finally, g(x, y, z) = (y3z2)(z3)

(x0y1z2)(z2) =
y3z5

y1z4 = y2z. Hence, the big-oh notational complexity,O(y2z)
is independent ofx. The computational resources requirement
will be independent ofx.

From the above analysis, following result is true.
Proposition 7: If f (n) is O(g11(n)g12(n). . .g1r(n)),

and h(n) is, O(g21(n)g22(n). . .g2s(n))), then f(n)
h(n) is,

O( g11(n)g12(n)...g1r(n)
g21(n)g22(n)...g2s(n)) ).

Proof: Follows directly from the four procedural steps in
determining the big-oh notational complexity for fractional
expressions as described before under this section. ut

VI. B IG-OH COMPLEXITY FOR ADDITION AND

MULTIPLICATION
In this section, the proposed framework has been extended

to the addition and the multiplication of functions. Suppose
thatf1(n) is O(g1(n)) or O(g11(n)g12(n). . .g1r(n)), andf2(n)
is O(g2(n)) or O(g21(n)g22(n). . .g2s(n))). It is required to
find out the big-oh complexity of,(f1 + f2)(n), and also of
(f1f2)(n). Now, f1(n) is O(g1(n)). Therefore,f1(n) = K1×
g1(n) + Lower Order Terms= K1 × g11(n)g12(n). . .g1r(n)
+ Lower Order Terms. Similarly, f2(n) = K2 × g2(n) +
Lower Order Terms= K2× g21(n)g22(n). . .g2s(n). Therefore,
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(f1 + f2)(n) = f1(n) + f2(n) = K1 × g1(n) + K2 × g2(n)
+ Other Lower Ordered Terms fromf1(n) and f2(n). Three
cases may be possible:
(1) g1(n) > g2(n): In this case,(f1 + f2)(n) is O(g1(n)) or
O(g11(n)g12(n). . .g1r(n)).
(2) g1(n) < g2(n): In this case,(f1 + f2)(n) is, O(g2(n)) or
O(g21(n)g22(n). . .g2s(n)).
(3) g1(n) = g2(n) = g(n): In this case, g(n) =
g11(n)g12(n). . .g1r(n) = g21(n)g22(n). . .g2s(n)). (f1 + f2)(n)
= f1(n) + f2(n) = (K1 + K2)(g(n)) + Other Lower Ordered
Terms fromf1(n) and f2(n), and(f1 + f2)(n) is O(g(n)) or
O(g11(n)g12(n). . .g1r(n)) or O(g21(n)g22(n). . .g2s(n)). This
analysis may be extended to functions with multiple variables
as well.

Next consider the multiplication of functions. Now,
(f1f2)(n) = f1(n)f2(n) = (K1 × g1(n) + Lower Or-
der Terms)×(K2 × g2(n) + Lower Order Terms) =
K1K2g1(n)g2(n) + Other Lower Order Terms in the product.
The modified complexity function is obtained by eliminating
the constant coefficients from(f1f2)(n). Since,(f́1f́2)(n) =
g1(n)g2(n) + Remaining Lower Order Terms without Coeffi-
cients, therefore,(f1f2)(n) is O(g1(n)g2(n)).

Example 8:Considerf (n) = 5n2log2(
∑n

j=1 j) + (4n2 +
7)log2(n). Denote n2log2(

∑n
j=1 j) by f1(n), and (4n2 +

7)log2n by f2(n). Therefore,f (n) = 5f1(n) + f2(n), which
is the summation of two individual functions. Now,f1(n) =
n2log2(

∑n
j=1 j) = n2log2(

n(n+1)
2 ) = n2log2(n2

2 + n
2 ). Again,

f2(n) = (4n2 + 7)log2n. Hence,f2(n) is a product of two
different functions. In this case, the product of the highest or-
dered terms without any coefficients is,n2log2n. In f1(n), the
product of the highest ordered terms without any coefficients
is, n2log2(n2

2 + n
2 ). Therefore,g1(n) = n2log2(n2

2 + n
2 ), and

g2(n) = n2log2n. Now, f́ (n) = 5n2log2(n2

2 + n
2 ) + n2log2n

+ Lower order terms. The order oflog2(n2

2 + n
2 ) is higher

than that oflog2n. Hence,g1(n) > g2(n). In log2(n2

2 + n
2 ),

the highest ordered term is,n2, and f (n) is O(g1(n)). Now,
log2(n2

2 + n
2 ) is a function of,h(n) = n2

2 + n
2 . Removing the

constant coefficients inh(n), the modified function is,́h(n)
= n2 + n. The highest ordered term ińh(n) is, n2. Using
case1, f (n) is, O(n2 log2(n2)), which is,O(n2 × 2log2(n)).
Removing the constant2, f (n) is, O(n2log2(n)).

Analysis for the multiplication of functions can be extended
to the functions involving multiple variables as well as to the
multiplication of more than two functions, as discussed in the
following subsection.

A. Addition And Multiplication Of Multi-variable Functions
Here, complexity of the addition and the multiplication of

j different functionsf1, f2, . . ., fj , each involvingk different
variablesn1, n2, . . ., nk are considered. Herek = 2, 3, . . ..
Suppose that the highest ordered terms inf1, f2, . . ., fj are
g1, g2, . . ., gj , respectively. For the addition of functions,
f (n1, n2, . . . , nk) = f1(n1, n2, . . . , nk) + f2(n1, n2, . . . , nk)
+ . . . + fj(n1, n2, . . . , nk) = K1g1(n1, n2, . . . , nk) +
K2g2(n1, n2, . . . , nk) + . . . + Kjgj(n1, n2, . . . , nk) + Lower
Order Terms from all of thej different functions. There are
two possible cases.

Case1: At least two functions out of thej different functions,
g1, g2, . . ., gj are distinct. In that case, letg(n1, n2, . . . , nk)
= max {g1(n1, n2, . . . , nk), g2(n1, n2, . . . , nk), . . .,
gj(n1, n2, . . . , nk)}. Therefore, f (n1, n2, . . . , nk) is
O(g(n1, n2, . . . , nk)).
Case 2: All functions g1, g2, . . ., gj are the same. In
that event, let g(n1, n2, . . . , nk) = g1(n1, n2, . . . , nk) =
g2(n1, n2, . . . , nk) = . . . = gj(n1, n2, . . . , nk). Therefore,
f (n1, n2, . . . , nk) = (K1 + K2 + . . . + Kj)g(n1, n2, . . . , nk)
+ Lower Order Terms = Kg(n1, n2, . . . , nk) + Lower
Order Terms, where K = K1, +K2 + . . . + Kk. Hence,
f (n1, n2, . . . , nk) ∈ O(g(n1, n2, . . . , nk)).

For multiplication, f (n1, n2, . . . , nk) =
f1(n1, n2, . . . , nk) × f2(n1, n2, . . . , nk) × . . .
× fj(n1, n2, . . . , nk) = (K1g1(n1, n2, . . . , nk) +
Lower Order Terms) × (K2g2(n1, n2, . . . , nk) +
Lower Order Terms) × . . .× (Kjgj(n1, n2, . . . , nk)
+ Lower Order Terms) = (K1K2 . . . Kj)
(g1(n1, n2, . . . , nk)×g2(n1, n2, . . . , nk)× . . . gj(n1, n2,
. . . , nk)) + Other Lower Order Terms re-
sulting from the multiplication. The modified
complexity function is, f́ (n1, n2, . . . , nk) =
(g1(n1, n2, . . . , nk)g2(n1, n2, . . . , nk). . . gj(n1, n2, . . . , nk))
+ Lower Order Terms = (g1g2 . . . gj)(n1, n2, . . . , nk)
+ Lower Order Terms. Hence, g(n1, n2, . . . , nk) =
(g1g2 . . . gj)(n1, n2,. . . , nk), and f (n1, n2, . . . , nk) is
O(g(n1, n2, . . . , nk)) or O((g1g2 . . . gj)(n1, n2, . . . , nk)).

Example 9:Consider the following function.
f (n1, n2, n3) = (n3

1 + n1n
4
2 + n2

2log2(n2
1 + n2

3))(n
2
13

n2 +
n2

2n3)(n1n
5
3 + n1log2(n2)). In f (n1, n2, n3), there are mul-

tiplications of three different functions. These are,
f1(n1, n2, n3) = (n3

1 + n1n
4
2 + n2

2log2(n2
1 + n2

3))
f2(n1, n2, n3) = (n2

13
n2 + n2

2n3)
f3(n1, n2, n3) = (n1n

5
3 + n1log2(n2))

The highest order term inf1 without any co-efficient
is, g1(n1, n2, n3) = n1n

4
2 (using the hierarchy in Section

2 on Terminology and Notations). Similarly, the highest
order term in f2(n1, n2, n3) is, g2(n1, n2, n3) = n2

13
n2 ,

and that inf3(n1, n2, n3) is, g3(n1, n2, n3) = n1n
5
3. Com-

plexity of f (n1, n2, n3) is O((g1g2g3)(n1, n2, . . . , nm)). But
(g1g2g3)(n1, n2, . . . , nm) = g1(n1, n2, n3) × g2(n1, n2, n3) ×
g3(n1, n2, n3) = (n1n

4
2) × (n2

13
n2) × (n1n

5
3) = (n3

1n
4
23

n2) ×
(n1n

5
3) = n4

1n
4
2n

5
33

n2 . Hence,f (n1, n2, n3) is, O(n4
1n

4
2n

5
33

n2 ).
In literature, there are three types of complexities. These

arebest case, worst case, and theaverage case complexities.
Big-oh complexity defines an algorithm’s upper-bound in
time and memory space requirements. However,Ω-notational
complexity defines the order of the minimum time and space
requirements to execute the algorithm. The average case
complexity considers the effects of all possible cases including
the best and the worst cases as well.

VII. PRESCRIBEDGUIDELINES FOR THECOMPLEXITY

ANALYSIS
Following are five common guidelines in determining the

complexity function for a given algorithm or a piece of code.
1) Loops: The maximum running time of a loop is the

single running time of the statements within the loop
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including loop tests multiplied by the total number of
iterations. Consider the following:

for i = 1 to n in step1 do
m = m + 2

end for
Each execution of the loop takes a constantc amount
of time. The loop executesn different times. Therefore,
the time complexity function is,f(n) = c × n. A unit
storage is required to storei, a unit to storen, and finally
a unit to storem. Therefore,3 memory units or6 bytes
of fixed storage space is required, andfs(n) = 6.

2) Nested Loops:Loops within the loops are common in
practice. For nested loops, start at the innermost loop
and then analyze inside out. Total running time is the
product of the sizes for all the loops. As an example,
consider the following:

for i = 1 to n in step1 do
for j = 1 to n in step1 do

k = k + 1
end for

end for
Here, an innerfor loop is nested within an outerfor loop.
For each execution of the outer for loop, the inner loop
executesn times. Outer loop also executesn times in
total. Suppose that the assignment statement,k = k + 1
takes a constant timec for its execution. Therefore, the
time complexity function,f(n) = c× n× n = cn2. We
need1 memory unit to storei, one to storej, one forn,
and finally one to storek. Altogether, we need4 memory
units or8 bytes, andfs(n) = 8 = constant.

3) Consecutive Statements:For consecutive statements,
find out expression for the total time in terms of the input
parameters for executing each individual statement, each
loop and each nested loop constructs. This provides the
time complexity function. For example, consider the
following statements.

p = p + 1;
for i = 1 to n in step1 do

m = m + 2
end for
for i = 1 to n in step1 do

for j = 1 to n in step1 do
k = k + 1

end for
end for

In this example, the complexity function,f(n) = c0 +
c1 × n + c2 × n× n = c0 + c1n + c2n

2. Here,c0 is the
time required by the assignment statement:p = p+1, c1

is the time required by:m = m + 2, andc2 is the time
consumed by the statement:k = k + 1. Only 1 memory
unit is required to store each one ofp, i, n, m, j andk.
Therefore, altogether, it requires6 integer memory units
or 12 bytes. Here,fs(n) = 12.

4) If-then-else statements: With the If-then-else state-
ments, the worst-case time complexity function is of
paramount importance. The worst-case total time is the

time required by the test, plus either the then part or the
else part time, whichever is the larger. As an example,
consider the following code:

if (x is equal toy) then
return false

else
{
for (m = 0 to m < n in step1) do

if (m is equal toy) then
return false

end if
end for
}

end if
In this example, in the worst-case, both theif and the
elseparts in the outerif-else structurewill be executed.
Let the time for theif test is c0. Within theelse structure,
the for loop will be executedn different times. If each
test condition within thefor loop takes c1 and the if
condition checktakesc2 amount of time, then the time
complexity function is,f(n) = c0 + n× (c1 +c2). Here,
we need2 memory units or4 bytes for storingx andy,
2 bytes for keeping the return address from the firstif,
2 bytes for storingn, 2 bytes for storingm, and finally,
2 bytes for saving the return address from the secondif
statement. Altogether, we will need (4 + 2 + 2 + 2 + 2)
= 12 bytes of memory for storing this code segment,
which is a constant. Hence, in this case,fs(n) = 12.

5) Logarithmic complexity: An algorithm is of logarith-
mic complexity if it takes a constant amount of time to
cut down the current problem size by a constant fraction
(usually by a fraction of12 ). For instance, if it takes a
constant amount of time to cut down the current problem
size by a fraction of1k , then the time complexity of the
algorithm is logarithmic, which is,O(logk (n)). From the
properties of logarithm,logk (n) = log2 (n)× logk(2).
However, for a particulark, logk(2) is a constant. Hence,
whatever is the value of the constantk, the complexity
order remains the same, which is,O(log2 (n)). An
example of such an algorithm is thebinary search
algorithm. Quite often, the binary search is used to find
a word inside a dictionary containingn pages.

VIII. T IME COMPLEXITY ANALYSIS

Following trivial algorithm computes the power of a real
numberb.

procedure Power R1 (b:real; n:positive integer)
begin
y := 1.0
for j := 1 to n do

y := y ∗ b
end

Consider the complexity function for the above trivial
function. Suppose that the first statement takesc1 amount of
time to execute each time. If each execution of the for loop
takesc2 time, then the time complexity function is,f (n) = c1 +
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nc2. Therefore,g(n) = n, and the big-oh notational complexity
of the algorithm is,O(n).
procedure Power R2 (b:real; n:positive integer)
begin
y := 1.0
j := n
while j > 0 do

begin
if j 6= 2* int(j/2) then {j is odd}

y := y ∗ b
j := int (j/2)
if j > 0 then

b := b ∗ b
end

end

With the improved version, the number of times thewhile
loop executes determines thetime-complexity function,f2(n).
It is same as the number of times the statement,j := int ( j

2 )
executes. Assume that the first statement consumesc1 amount
of time, the second statement consumesc2 amount of time, and
each execution of the while loop takesc3 amount of time on
the average. If the while loop executesk different times, then
2k = n (assumingn is an even power of2), or k = log2(n).
Therefore,f2(n) = c1 + c2 + k × c3 = c1 + c2 + c3log2(n).
Hence,g(n) = log2n, and the complexity is,O(log2n).

Following table shows the relative improvement encoun-
tered using the improved second version over the trivial first
version, expressed in the form of a ratio with the increasing
problem size.

TABLE I

RELATIVE IMPROVEMENT IN PERFORMANCE FOR USING THE IMPROVED

ALGORITHMIC APPROACH.

n Vt1 Vt2 I=
Vt1
Vt2

210 1, 024 40 25.6
212 4, 096 48 85.3
214 16, 384 56 292.6
216 65, 536 64 1, 024.0
218 2, 62, 144 72 3, 640.9
220 10, 48, 576 80 13, 107.2
224 1, 67, 77, 216 96 1, 74, 762.7

Following depicts the improvement using a plotted curve
encountered with the improved version over the trivial version
for the increasing problem sizes.

From Fig.1, with the increasing problem sizes, the improve-
ment factor,I increases at an extremely fast rate, dictating the
supremacy of the second algorithm over the first one with
larger problem instances. This characteristic is one of the
major deciding factors behind designing a new algorithm to
solve a problem.

IX. SET THEORETICAPPROACH TOCOMPLEXITY
The explanation forΩ, Θ, ω, and the smallo notational

complexities becomes quite simple and straight-forward using
the set theoretic notions and notations. For instance,Ω(g(n))
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Fig. 1. The improvement factor,I is plotted againstlog2(n).

is the set of functions that includes all such functionsf(n)
such that,f(n) ≥ c × g(n) for n > n0. Expressed using the
set theoretic notation, this fact becomes,Ω(g(n)) = { f(n)
| f(n) ≥ c × g(n)}, n > n0. Here, c is a constant. This
means,Ω(g(n)) is the set of all such functionsf(n), such
that f(n) ≥ c × g(n) for constantc. Similarly, O(g(n)) = {
f(n) | f(n) ≤ c × g(n)}, n > n0. This implies,O(g(n)) is
the set of all such functions such thatf(n) ≤ c× g(n) holds
true for a constantc, and beyondn ≥ n0.

If there is a functionf(n) such that for any positive
constant,c, f(n) < c × g(n), then f(n) ∈ o(g(n)). This
means the functiong(n) defines the upper bound to the set
of functionso(g(n)) for any positive constant,c. This is true
wheneverg(n) is a function with a higher complexity order
compared toO(g1(n)), such thatf(n) ∈ O(g1(n)). Therefore,
g1(n) < g(n). If there is a functionh(n) such that for any
positive constantc, h(n) > c × g(n), thenh(n) ∈ ω(g(n)).
Thus,g(n) will define the lower bound to the set of functions,
ω(g(n)) for any positive constant,c. This is only possible, if
h(n) ∈ O(k(n)), and g(n) < k(n). Hence,g(n) < k(n) is
true for any lower order functiong(n) in the complexity hier-
archy. If f(n) is a function ofn, and if there exists a positive
constantc such thatf(n) ≥ c × g(n), thenf(n) ∈ Ω(g(n)).
Therefore,g(n) is the highest order function that defines the
lower bound forf(n). Similarly, if f(n) ∈ O(g(n)), theng(n)
is the lowest order function in the complexity hierarchy that
defines an upper bound forf(n). If there are two different
constants,c1 andc2, such that,c1×g(n) ≤ f(n) ≤ c2×g(n),
theng(n) defines both the lowest order upper bound and the
highest order lower bound. In that event,f(n) ∈ Θ(g(n)).
Since c1 × g(n) ≤ f(n), therefore,f(n) ∈ Ω(g(n)). Also
f(n) ≤ c2×g(n). Hence,f(n) ∈ O(g(n)). From the definition
of the set intersection,f(n) ∈ O(g(n)) ∩ Ω(g(n)). Finally,
Θ(g(n)) = O(g(n)) ∩ Ω(g(n)). This means that the set of
functions,Θ(g(n)) contains all such functions that lie at the
set intersection of the set of functions,O(g(n)) andΩ(g(n)).

X. SPACE COMPLEXITY ANALYSIS
Storing data and programs occupy storage units or the main

memory space. Processing information also needs memory.
This is not the hard disk space, but the computational memory
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of the computer, which is the computer’s RAM. Since the
computational memory is expensive, it is necessary that the
programs consume as little memory as is possible, and con-
sumes the optimum amount of it. Therefore, it is imperative
to do the big-oh notational complexity analysis to find out
the upper bound on memory space consumption, which also
provides with an estimate on the required computational
memory overhead.

Consider an example. Suppose we want to write a program
to compute the sum of a given list of numbers. The program
goes into a loop for a predetermined number of iterations,
which is equal to the size of the list, for example100 or 200,
... etc., asking the user to enter a number, and keeps adding
these numbers. We would like to find the space complexity of
this algorithm.

There are three simple steps for determining the space
complexity that one should follow:
Step 1: Identify the parameter(s) that determine the problem
size.
Step 2: Find out how much space (i.e. memory in bytes) is
needed for a particular size.
Step 3: Find out how much space (i.e. memory in bytes) is
needed for twice the size considered earlier.
Repeat step3 many times until you establish a relationship
between the size of the problem, and the corresponding space
requirements. This relationship provides us with the space
complexity to that program. Now, apply the above steps to
the example stated above.

The problem size is obviously the size,n of the list of
numbers to be added. Assume that there is a list of100
numbers. Obviously, a variable is required where the numbers
are to be entered (one at a time, may be from the keyboard),
and a variable (initialized to0) where the current running
sum is to be kept. Thus, two distinct variables are required
to compute the sum. Next consider a list of200 numbers
(twice the size as before). Obviously, still only two variables
are required. Next consider a list having400 numbers (twice
as before). Still only two variables are required to store
the results. Hence, it is possible to conclude that no matter
how many numbers are added, always a constant number of
variables is required for the operations, thus the relationship
between the input problem size, and the space consumed (i.e.
the space complexityof the program) is a constant. Hence,
the space complexity of the given algorithm is,S(n) ∈ O(1).
Consider the following segment of code. It is required to find
out the space complexity for the following code segment:
int n; cin >> n;
int A[][] = new int[n][n]; int B[][] = new int[n][n]; int C[][]
= new int[n][n]; i, j;
for (i = 0; i < n; i + +)

for (j = 0; j < n; j + +)
cin >> C[i][j] >> B[i][j];

for (i = 0; i < n; i + +)
for (j = 0; j < n; j + +)

A[i][j] = B[i][j] + C[i][j];
There are3 n × n matrix required to implement the above
code. The size of each matrix depends on the input sizen,
which is a variable. The fixed space requirement for storingi,

j, andn is, Sf = 2 + 2 + 2 = 6.
The variable space required (depending upon the supplied

value of n) is, Sv(n) = 3 × n × n = 3n2. Hence, the total
space requirement is,S = Sf + Sv(n) = 6 + 3n2. Therefore,
S ∈ O(n2). Recursive data structures have significant effect
on space complexity. This is due to the fact that a recursive
data structure consumes a considerable amount of dynamic
storage area inside the computer’s recursive stack space, which
is counted as a component ofSv(n). For allocating dynamic
memory using the keywordnew inside the dynamic memory
area, it contributes directly toSv(n). Consider the following
program sample. The first version is iterative:
template<class T>
T Sum (T a[ ], int n)
{ // Return sum of numbersa[0:n− 1].
T tsum =0;
for (int i = 0; i < n; i + +)

tsum+ = a[i];
return tsum;}
For this algorithm, suppose that the first statement takesc1

amount of time, each execution of the for loop consumes
c2 amount of time, and the last return statement requiresc3

amount of time. Therefore,T (n) = c1 + n× c2 + c3. Hence,
T (n) ∈ O(n). For the space complexity,Ss = 2+2+2+2+2 =
10, andSv(n) = 0. Therefore,S(n) = 10, andS(n) ∈ O(1).
The space-time bandwidth product is,C(n) ∈ O(n), which
is linear. Next consider the following recursive version of the
same program.
template<class T>
T Rsum (T a[ ], int n)
{ // Return sum of the numbersa[0: n− 1].
if (n > 0) return Rsum (a, n− 1) + a[n− 1];
return0; }
For the recursive version,T (n) = c1 × (n + 1) + c2 × n
+ c3. This yields,T (n) ∈ O(n). Now the space complexity
function is, S(n) = Ss + Sv(n) = 2 + x × n +2 × n.
Therefore,S(n) ∈ O(n). Hence, the space-time bandwidth
product is,C(n) ∈ O(n2). Thus, the computer requires more
computational resources with the recursive implementation
compared to the corresponding iterative version. This differ-
ence is mainly due to the space complexity of the recursive
data structure.

The principal factors contributing to the dynamic memory
space consumptions are due to the building up of the recursive
stack space and space consumptions within the dynamic
memory area. There is an interesting relationship due to Knuth
that relates the time complexity to the lower bound in space
complexity (the minimum space requirement).

Theorem 10:Any algorithm that takesf (n) time must use
at leastlog(f (n)) space.

Example 11:Suppose that the time complexity of an al-
gorithm is, O(n3(log(n))2). Therefore,f (n) = n3(log(n))2.
Hence, the algorithm requires at leastlog(n3(log(n))2)
amount of memory space or more than that. However,
log(n3(log(n))2) = log(n3) + log(log(n))2) = 3log(n) +
2log(log(n)). Now, log(n) > log(log(n)). Therefore,log(n)
provides a lower-bound on the space requirement for this
algorithm. Stated in another way,S(n) ∈ Ω(log(n)).
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XI. CONCLUSION
Complexity helps predict whether an algorithm will take

up prohibitive amount of computation time with the larger
input sizes for the problems. This is specifically true with the
exponential algorithms.

In this paper, a new paradigm for analyzing the compu-
tational complexity of algorithms and functions is presented.
A problem may have more than one solution with each one
expressed as a different algorithm. Therefore, it is necessary
to compare among the performance of algorithms. After
comparison, the user may select the one, that best fits his
computational needs. There are several factors that are required
to be considered in comparing among the algorithms. For
instance, algorithms may be compared based on the com-
putational elegance, clarity, ease of understanding, and the
computational resources requirements. But the computational
complexity particularly concentrates on the computational
resources requirements. The cost of a computation depends
on two major factors. One is determined by the technology
that has been used, and the other one is the actual technique
involved during the computation. The actual technique refers
to the manner in which the computation is carried out. Due
to the rapid technological advancements, it makes more sense
to compare algorithms on the basis of the costs associated
with their internal characteristics rather than the external
factors. With this objective on mind, discarding the constant
coefficients from the complexity function provides with the
modified complexity function.

In future, applications of the proposed paradigm in Numer-
ical Algorithms as well as in Operations Research will con-
sidered. Corresponding avenues of research will be explored
to identify further the unexplored new results.
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