
 

 

  
Abstract— In this paper, Artificial Neural Network (ANN) 

technique has been used for the estimation of low order odd current 
harmonics mainly from input and output measurements of five 
different chorded induction motors. A sinusoidal pulse-width 
modulation (SPWM) inverter feeding five different chorded three-
phase induction motors were tested for low-order odd harmonic 
current component from half load to overload. The results show that 
the artificial neural network model produces reliable estimates of low 
order odd current harmonics. 
 

Keywords— Artificial Neural Network; Total Harmonic 
Distortion; Harmonic Estimation, Induction Motors  

I. INTRODUCTION 

URING the last decade ANN models have been applied 
widely to prediction of the data. Such a prediction study 
has been completed in this paper, to compare the 

effectiveness of artificial intelligence approach. Multilayer 
feed forward neural network trained by the back propagation 
technique employed in the stator low order odd current 
harmonic estimation. Therefore, a sinusoidal pulse-width 
modulation (SPWM) inverter feeding five different chorded 
three-phase induction motors were tested from low load to 
over load. The motors were tested at different switching 
frequencies up to 15Khz. The number of all measurements 
results obtained from experiments is 220.  166 of this data 
were used for training, 54 were used for testing the neural 
network. Based on experimental results, the artificial neural 
network model produces reliable estimates of low order odd 
current harmonics [2],[3]. 
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II. THE EXPERIMENTAL INVESTIGATION OF THE HARMONIC 
VARIATIONS 

A. Configuration of the Experimental System 
Flow chart of the experimental system is shown in Fig. 1. It 

consists of a three-phase PWM inverter which gives output by 
comparing the modulating signal with carrier signal technique 
at variable switching frequencies from one to 15 kHz and 
supplies 50Hz, 380V (r m s) voltage to a three-phase squirrel 
cage induction motor under test. A digital power analyzer with 
3, 2 kHz sampling frequency  is used to measure the stator 
voltage harmonics, stator voltage, stator current and input 
power to the motor.  

 
B. Harmonic Variations 
Figs. 2–4 are the stator low-order current harmonics for the 

different motors with (1-10), (1-9), (1-8), (1-7) and (1-6) coil 
pitch at half load, full load and overload, respectively. If the 
coil pitch is shortened by 1/n of the pole pitch then the nth 
harmonic will be suppressed or the harmonics near to n will 
be with low voltage, because of the harmonic cancellation at 
that coil pitch[3], [19].  

As the motor full pole pitch is (1-10) and for M5 (1-6) 
motor the coil pitch is reduced by 44,44 % of the full pole 
pitch, the 5th harmonics voltage is reduced dramatically 
compared to other motor with a different coil pitch. The same 
effect occurs at all loads as seen from Figs. 2–4. If we 
consider motor M4 (1-7), the coil pitch is reduced by 33.33% 
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Fig. 1 Flow chart of experimental system 
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of pole pitch, so the 3rd, harmonics voltage is reduced at half 
load and at full load. Also the 7th, 9th and 11th order 
harmonics voltages are reduced as seen in Figs. 2–4 [19]. 

 

 

 

 
 
In motor M3 (1-8) the coil pitch is reduced by 22.22%, the 

5th harmonics is suppressed at all load in fig. 2-4. The 7th 
harmonics is less than in the (1-9) and (1-10) motors (Fig. 6). 
If we consider motor M2 (1-9) the coil pitch is reduced by 11, 

11%, the 13th harmonics voltage and current are reduced 
compared almost all motors with different coil pitch. So there 
are more possibilities of harmonics cancellation in motor M5. 
The effect of chording can be seen in THD in current due to 
3rd, 5th, 9th, 11th and 13th harmonics (Table 1).  

Low-order harmonics in stator voltage of three phase 
induction motor fed by PWM voltage could be reduced by 
chording the stator winding. This suppresses particular 
harmonic components with different type of coil pitch but also 
aids the other low order harmonics. 

 

III. NEURAL NETWORKS  

A. Artificial Neural Network (ANN) 
The neural networks are very efficient to solve many sorts 

of problems, because does not require previous knowledge on 
the system to be predicted, has a large tolerance to noise and is 
very robust. 

An artificial neural network is an information-processing 
system inspired on some characteristics of the biological 
neural networks. It consists on a large number of simple 
processing elements called neurons, units, cells or nodes. Each 
neuron is connected to other neurons by means of direct 
communication links, each with an associated weight. The 
weights represent information being used by the net to solve a 
problem. Neural nets can be applied to a wide variety of 
problems such as storing and recalling data of patterns, 
classifying patterns, performing general mappings from input 
patterns to output patterns, grouping similar patterns, or 
finding solutions to constrained optimization problems.  

Each neuron as an internal state called its activation or 
activity level, which is a function of the inputs it as received. 
Typically, a neuron sends is activation as a signal to several 
other neurons. It is important to note that a neuron can send 
only one signal at a time, although that signal is broadcast to 
several other neurons [6].   

There are multitudes of different types of ANN models. 
Some of the more popular of them include the multilayer 
perceptron, which is generally trained with the back 
propagation algorithm. Such a network including three layers 
of perceptrons is shown in Figure 5 [1]. 

     By the algorithmic approach known as Levenberg-
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Fig. 3 Low – order current harmonics at full load 

TABLE 1.   % VALUE OF  THD AT ALL LOADS 
 

 Half load Full load Over load 

Coil Pitch THD I THD I THD I 
180 8,4 6.9 5.1 
160 7 6.3 6.1 
140 6.5 5.8 4.1 
120 6.8 6.5 6.4 
100 7.1 6.9 6.5 
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Fig. 4 Low – order current harmonics at over load 
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Fig. 2 Low – order  current harmonics at half load 
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Marquardt back propagation algorithm, the error is decreased 
repeatedly. Some ANN models employ supervisory training 
while others are referred to as none-supervisory or self-
organizing training. However, the vast majority of ANN 
models use supervisory training. The training phase may 
consume a lot of time. In the supervisory training, the actual 
output of ANN is compared with the desired output. The 
training set consists of presenting input and output data to the 
network. The network adjusts the weighting coefficients, 
which usually begin with random set, so that the next iteration 
will produce a closer match between the desired and the actual 
output. The training method tries to minimize the current 
errors for all processing elements. This global error reduction 
is created over time by continuously modifying the weighting 
coefficients until the ANN reaches the user defined 
performance level [1],[2].  

This level signifies that the network has achieved the 
desired statistical accuracy for a given sequence of inputs. 
When no further training is necessary, the weighting 
coefficients are frozen for the application. After a supervisory 
network performs well on the training data, then it is 
important to see what it can do with data it has not seen 
before. If a system does not give reasonable outputs for this 
test set, the training period is not over. Indeed, this testing is 
critical to insure that the network has not simply memorized a 
given set of data, but has learned the general patterns involved 
within an application [1], [2].  

In order to use the ANN simulator for any application, first 
the number of neurons in the layers, type of activation 
function (purelin, tansig, logsig), the number of patterns, and 
the training rate must be chosen. 

 

B. Designing Process  
ANN designing process involves five steps. These are 

gathering input data, normalizing the data, selecting the ANN 
architecture, training the network, and validation-testing the 
network. In the training step, twenty input variables: Phase 
voltages and currents (VL1), (IL1), coil pitches angle (k), carrier 
frequency (kHz) and output variable: Low order odd current 
harmonics , (3rd, 5th  and 7t h harmonics) 

 

C. Data Pre-Processing 
The operating data of the induction motors are transmitted 

to the PC through RS-485 for later analysis.  Each motor was 
loaded by an electromagnetic brake which is controlled by the 
dc voltage applied to the brake provided with two arms, one 
of which with balances weight for measuring the out put 
torque of the motor. The brake includes a cooling fan that is 
supplied by the main voltage. Force applied to the induction 
motor is measured with a dynamometer which is mounted on 
the electromagnetic brake’s one arm to obtain the applied 
force. The stator winding of five commercial, 1100W, 36-
slots, three-phase, four-pole squirrel cage induction motors 
were re-wounded with different coil pitches. The coil pitch for 
each motor was re-wound to pitch 1800 (Full pitch, 1-10 slots 
pitch), 1600 (1-9), 1400 (1-8), 1200 (1-7) and 1000 (1-6) for 
M1, M2, M3, M4 and M5 motors, respectively. The pole pitch 
is 9 slots with 3 conductor slots per pole per phase. The slot 
pitch is 200 so for full pitch winding the coil pitch is 1800 and 
the coil pitch is reduced by 200 each time for other motors 
resulting in coil pitch of 1600, 1400, 1200 and 1000 
respectively. The stator winding of five commercial, different 
power, different pole, three-phase, squirrel cage induction 
motors were loaded with applied torque of from 1 to 9,74 Nm 
for 1.1 kW and 7.8 Nm for  0.75 kW  (full load was 8,18 Nm 
for 1.1 kW and 6.2 Nm for 0.75 kW). To measure the winding 
temperature, K-type thermocouples were attached to the stator 
winding of all five motors. The power and harmonic analyzer 
employs the fast Fourier transformation to obtain the 
harmonic voltage components with PWM supply was used 
[5]-[9].  
 

D. Normalizing the Data  
Normalization of data is a process of scaling the numbers in 

a data set to improve the accuracy of the subsequent numeric 
computations and is an important stage for training of the 
ANN. Normalization also helps in shaping the activation 
function. For this reason, [+1, -1] normalization function has 
been used. 

 

E. Selecting the ANN Architecture 
The number of layers and the number of processing 
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Fig.5 Two-layers feed forward network 
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elements per layer are important decisions for selecting the 
ANN architecture. Choosing these parameters to a feed 
forward back propagation topology is the art of the ANN 
designer. There is no quantifiable, best answer to the layout of 
the network for any particular application. There are only 
general rules picked up over time and followed by most 
researchers and engineers applying this architecture to their 
problems.  The first rule states that if the complexity in the 
relationship between the input data and the desired output 
increases, then the number of the processing elements in the 
hidden layer should also increase. The second rule says that if 
the process being modeled is separable into multiple stages, 
then additional hidden layer(s) may be required. The result of 
the tests has showed that the optimal number of neurons in the 
first layer can be chosen as 16 also, the activation function has 
been chosen as a hyperbolic tangent sigmoid function for all 
of the layers [2]. 

F. Training the Network 
ANN simulator has been trained through the 20 epochs. 

The training process has been stopped when the system has 
been stable.  

G. Testing the Network 
In the test, an unknown input pattern has been presented to 

the ANN, and the output has been calculated. Fig. 4 shows an 
example of obtained from ANN model, together with the 
target demands. Linear regression between the ANN output 
and target is performed.  

Test results of ANN model for 3TH ,5TH and 7TH harmonic 
of current from first training epoch until 20th training epoch 
was shown in Tables 1, 2 and 3 respectively [5]-[8], [37],[38]. 

 

 

 

 
Fig. 6 The ANN output of system data together with the target 
data for 3TH HARMONIC of current 

TABLE 1 
 TEST RESULTS OF ANN MODEL FOR 3TH HARMONIC OF 

CURRENT 

Epochs No MSE Values 

1 0.109546/1e-007 
2 0.055821/1e-007 
3 0.03695/1e-007 
4 0.0233878/1e-007 
5 0.0212403/1e-007 
6 0.0207093/1e-007 
7 0.0204133/1e-007 
8 0.0201212/1e-007 
9 0.020044/1e-007 

10 0.0180244/1e-007 
11 0.0165099/1e-007 
12 0.0152717/1e-007 
13 0.0136373/1e-007 
14 0.0100856/1e-007 
15 0.0091511/1e-007 
16 0.0080818/1e-007 
17 0.00743411/1e-007 
18 0.00663942/1e-007 
19 0.00628233/1e-007 
20 0.00597929/1e-007 
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IV. CONCLUSION 
After ANN learning and test steps founded regression 

coefficients (R = 0. 9688) shows that target and ANN output 
values were very related each other. The regression analysis 
was shown for learning step in figure 9, figure 10 and 11 for 

 
Fig. 8 The ANN output of system data together with the target 

data for 7TH HARMONIC of current  

 
Fig. 7 The ANN output of system data together with the target 

data for 5TH HARMONIC of current  

TABLE 3 
 TEST RESULTS OF ANN MODEL FOR 7TH HARMONIC OF 

CURRENT 

Epochs No MSE Values 

1 0.411193/1e-007 
2 0.282313/1e-007 
3 0.113071/1e-007 
4 0.105021/1e-007 
5 0.0972137/1e-007 
6 0.0950704/1e-007 
7 0.0935306/1e-007 
8 0.0923088/1e-007 
9 0.0912871/1e-007 

10 0.0903939/1e-007 
11 0.0895827/1e-007 
12 0.0888289/1e-007 
13 0.0881257/1e-007 
14 0.0874738/1e-007 
15 0.0868715/1e-007 
16 0.0863142/1e-007 
17 0.0857958/1e-007 
18 0.0853105/1e-007 
19 0.0846256/1e-007 
20 0.079333/1e-007 

 

TABLE 2 
 TEST RESULTS OF ANN MODEL FOR 5TH HARMONIC OF 

CURRENT 

Epochs No MSE Values 

1 0.342368/1e-007 
2 0.187303/1e-007 
3 0.110984/1e-007 
4 0.0826951/1e-007 
5 0.0771614/1e-007 
6 0.0738092/1e-007 
7 0.0674827/1e-007 
8 0.0637188/1e-007 
9 0.0601145/1e-007 

10 0.0572291/1e-007 
11 0.0547439/1e-007 
12 0.0527739/1e-007 
13 0.051013/1e-007 
14 0.0495189/1e-007 
15 0.0482354/1e-007 
16 0.0470753/1e-007 
17 0.0459903/1e-007 
18 0.0449562/1e-007 
19 0.0439059/1e-007 
20 0.0427786/1e-007 
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3TH harmonic of current, 5TH harmonic of current and 7TH 
harmonic of current respectively. The regression analysis 
shows that target and ANN output values were very related 
each other. The ANN output of system data together with the 
target data for 3TH, 5TH and 7TH harmonic of current was 
shown in figure 6, 7 and 8 respectively.  So the ANN model 
produces reliable estimates of low order odd current 
harmonics. The results have also pointed out that ANN can 
implement many other data prediction efforts easily and 
successfully [37]-[38]. 
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